
* Best,
Avai~lable

Copy

NAVAL PO3STGRADUATE SCHOOL
Monterey, Caliornia

AD-A283 669

%UA~i*AUG 2 6 1994 f
THESIS0

A Platform Independent Application
Of

Luxi Illumniation Prediction Algorithms

by

Mfichael Theodore Lester

June 1994

Thesis Advisor: Douglas J. Fouts

Approved for public release; distribution is unlimited.

94--27196

94 8 25 0O12

Unclansified
SECURITY CASSIFICATION OF 1Tis PACE

Form APPeQ

REPORT DOCUMENTATION PAGE ONM No 070"1113

I a REPORT SECURITY CLASSIFICATION lb. RE.STICFIVE MARKINGS
UNLASWMD
2ir SECURITY CLASSlFICATION AUTHORITY 3. DISTRUTIONIAVAIlABILITY OF REFORT

Apxoved for public reasc, disauibuion unlimted
2V DECLASSIFICAT1OWDOWNGRADING SCIEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

4.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE S O 7L NAME OF MONrTORING ORGANIZATION
Naval Ptu WaaSdool If applficabe)

6c. ADDRESS (Cty, se, md ZI Co&) 7b. ADDRESS (City, Sta. and ZIP Code)

CA 93943-50 Motmmy, CA 93943-5000
WU. NAME Ub. OFFICE SYMBOL 9 PROCUREMENT INSTRU•ENT I0D EATION NUMBER

ORGANIZATION (If appicabl)

1c. ADDRSS (Ciy, Smag md ZIP Code) 10. SOURCE OFUNDING NUMBES
PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. NO. NO. ACCESSION NO,

11. TMT• I 0d Sao* MOGEN)

A Platform Independent Application of Lux Illumination Prediction Algorithms

12. PERSONAL AUTHOR(S)

LAter, Michael Theodore
13& TYPE OF REPORT 13b. TIME COVERED ,4. DATE OF REPORT (Y'M•onhDAy) 15. PAGE COUNT

Mastes Thesis FROM __ TO June 1994 126
16. SUPILEMENTAY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.
17. COSAT! CODES I8. SUBJECT TERMS (Codane on reonvee if maceumy and identify by block number)

FIELD GROUP SUB-GROUP

Illumination, NVG, Illumination Prediction

19. ABSNRACT (Coomm i mn my if =umay aid id0tifby block umber)

Naval Aviators require prior knowledge of the time and location of astronomical phenomena in order to properly plan and execute
combat mad training operations during the hours of darkness using Night Vision Devices (NVD's). This thesis presents a computer application of
illumination prediction algorithms which predict the time of selected astonomical phenomena. This computer program is platform independent
(given the proper libraries), event-driven, object-oriented, and utilizes a Graphical User Interface (GUI). Using this application, operators in the
field will be able to determine the time of selected phenomena and the quantity of illumination, measured in Lux, for a given time and date.

20. DISTRrUTXNAVAf.ABLtur OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNMASSIAsaImsUMMlr 0 SAM AS RP 0 DIC UasER

22L NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Ame Code) 22c. OFFICE SYMBOL

Douglas J. Fouts 408-656-2852 EC/FS

)D An 4"M JUN U PMviokm ediiow wMrobslg. SSEL1 L DASS . fTION OF T- PAGE

S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution unlimited.

A Platform Independent Application
of

Lux Illumination Prediction Algorithms

by

Michael Theodore Lester
Captain, United States Marine Corps

E.S, United States Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

June, 1994

Author: _ _ _ _ _-

Michael Theodore Lester

Approved by:

I/Rym~nd P. Be~mftein Jr., Second Reader

Michael A. Morgan, Chainman,
Department of Electrical and Computer Engineering

ii

Abstract

Naval Aviators reqx .or knowledge of the time and location of astronomical

phenomena in order to properly plan and execute combat and training operations during

the hours of darkness using Night Vision Devices (NVD's). This thesis presents a

computer application of illumination prediction algorithms which predict the time of

selected astonomical phenomena. This computer program is platform independent (given

the proper libraries), event-driven, object-orir'ted, and utilizes a Graphical User Interface

(GUI). Using this application, operators i , . fi., will be able to determine the time of

selected phenomena and the quantity of illuminan-.i, weasured in Lux, for a given time

and date. Accesion For

NTIS CRA&I
DTIC TAB
Unannounced Q
Justification..........

By.
Distribution !

Availability Codes

Avail and I or
Dist Special

inii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND ... I

B. OBJECTIVES ... I

C. SUM M ARY OF THESIS ... 2

1. Night Imaging Considerations .. 2

2. Prediction Algorithm s .. 2

3. Testing and Validation .. 2

4. User Interface ... 3

5. Coding Considerations .. 3

6. Future W ork Needed / Upgrades .. 3

7. User's M anual (Appendix) ... 3

II. NIGHT IMAGING CONSIDERATIONS ... 5

A. THE NATURE OF LIGHT .. 5

B. PROBLEMS WITH ILLUMINANCE PREDICTION 7

1. Spectrum Selection ... 7

2. Atmospheric Attenuation ... 8

3. Altitude Discrepancy .. 8

4. Geographic Limits ... 8

5. M eteorology ... 9

6. Illuminance .. 9

I. ALGORITHM S .. 11

A. FAST VERSUS ACCURATE .. 11

B. ACCURACY ... 11

iv

C . A LG O RITH M O V ERV IEW ... 12

1. G eneral ... 12

2. Coding Consi ndstions ... 13

IV . TESTIN G A N D V A LID A TION .. 15

A . TESTIN G .. 15

1. Prelim inary .. 15

2. Final... 15

B . V A LID A TIO N ... 16

V . U SER IN TERFA CE ... 17

A . G EN ER AL .. 17

B . M EN U S ... 17

C. D IA LO G BOX ES .. 17

VI. CODING CONSIDERATIONS .. 19

A . LAN G U A GE CH OICE .. 19

B . LIBR ARIES .. 19

C. PROGRAM STRUCTURE .. 19

1. Control H ierarchy ... 19

2. Classes ... 21

3. Program Flow ... 24

4. Calendar O ptim ization ... 27

VII. FUTURE WORK NEEDED / UPGRADES .. 32

A. FUTURE WORK NEEDED ... 32

B . FUTURE U PG RA D ES .. 33

APPENDIX A: USER'S MANUAL .. 34

APPENDIX B: SOURCE CODE .. 56

V

Bio W -h 56

C onn s.htl .. 57

Diflon s.h .. 59

Dialogs.h .. 64

ll 70

IIIdat... 70

loedat n.hh .. 72

Monufrt m .h ... 73

Routin wcs p 74

bm pshow.cpp .. 75

dialop p ... 76

fhsll .cpp .. 91

l .cpp ... p... 101

locam ions.cpp .. 107

m enufral .cpp .. 110

m oonlite.cpp ... III

routines .. 115

List of R .ef nm es... 116

Bibliography.. 117

Initial Distribution list .. 118

vi

I. INTRODUCrION

A. BACKGROUND

Combat operations are increasingly conducted during the hours of darkness.

Operations at night give a decided tactical advantage to the technologically advanced

force possessing night vision devices (NYD's). Helmet mounted NVD's used by aviators

are limited, however, to the simple amplification of ambient light.[l] Operations

involving NVD's must be planned to coincide with appropriate illumination. Since

NVD's are passive, i.e. they merely magnify available light, they require a minimum

amount of illumination to operate. Additionally, since they magnify light on the order of

10,000 times (AN/PVS5: X10,000 gain, AN/AVS6: X25,000 gain)[lJ , there can not be

too much illumination or the NVIYs will reach saturation and shutdown to protect their

circuitry. Battlefield planners require a method for determining the time and location of

astronomical phenomena such as sun rise, sun set, moon rise, moon set, and for

det ii the amount of light available from these phenomena. Previously, this

information was available in tabular form in the Nautical Almanac or from a computer

program called LITELEVL.

LITELEVL is written in the ubiquitous GWBASIC. It is completely text based and

runs only on MSDOS compatible personal computers.[2] LITELEVL is not optimized

for any parameters and thus has a response time of many seconds for a single line of a

planning calendar output.

B. OBJECTIVES

This thesis will produce an improved application of the tested illumination prediction

algorithms. This application, called MOONLITE to differentiate it from its predecessor,

has the following properties:

I

" Platform independent. With proper libraries the source code may be compiled
to run under Microsoft WindowsTm , Microsoft Windows NTW, IBM OS/2Tm,
DOSTh (graphics mode), DOSTm (text mode), UNIX Motif, and (in the future)
Apple Macintosh Tm .

"* Graphical User interface featuring pull down menus and point-and-shoot dialog

boxes.

"* Event-driven architecture.

"* Object-oriented design for ease of maintenance and upgrading.

"* Ability to store multiple geographic locations for future analysis.

"• Increased speed.

"• Increased accuracy.

C. SUMMARY OF THESIS

1. Night Imaging Considerations

This section investigates the basic concepts of illumination and illuminance. It

presents a short tutorial on the nature of light, the movement of the heavenly bodies, and

the effect of meteorology on local illuminance. It also examines the effects of altitude,

geography, and human interpretation on the accuracy of predicted astronomical events.

2. Prediction Algorithms

Two separate algorithms are used in MOONLITE. They are referred to as the

"fast" algorithm and the "accurate" algorithm. This chapter examines both algorithms. It

reviews their relative strengths and weaknesses and briefly explores their coding.

3. Testing and Validation

Prior to its release to the subordinate units of the Department of Defense,

MOONLITE must be tested and validated by the United States Naval Observatory.

2

Initial testing was accomplished during coding. Tlus chapter briefly introduces the

benchmarks by which the data is judged. Rigorous testing will be accomplished at the

Naval Observatory.

4. User Interface

The user interface is perhaps the most important part of a program. Regardless of

the accuracy or efficiency of the underlying code, the user will either use or not use a

program dependent upon the user interface. A great deal of time and effort was devoted

to making MOONLITE's user interface intuitive, friendly, and efficient. This chapter

examines the nuances of the user interface, detailing design considerations and decisions

where necessary.

5. Coding Considerations

The coding of a program determines its accuracy and its efficiency. This chapter

examines the general coding of the program. Class structures and data structures are

examined in this chapter. Coding decisions and concerns are addressed, as are logic and

program flow.

6. Future Work Needed / Upgrades

This chapter outlines future work which will be accomplished by the author at the

next duty station. In addition, ideas for future enhancements are discussed.

7. User's Manual (Appendix)

This appendix is designed to serve as a user's manual for MOONLITE. It may be

removed from the attached material and distributed with MOONLITE to the end user. It

is designed to be concise enough to allow a person with limited technical background to

3

install and use MOONLITE. It describes the input and output requirenents in addition to

presenting the reader with an easy to follow tutorial for anticipated actions.

4

II. NIGHT IMAGING CONSIDERATIONS

A. THE NATURE OF UGHT

Light, as we will use the term here, is the portion of the electromagnetic spectrum

which is visible to the human eye. The electromagnetic spectrum spans all frequencies

from sub-aural (less than 20 Hz) to cosmic rays (1022 Hz) and beyond. Electromagnetic

energy with a wavelength between 400 and 700 nanometers is visible to humans. We call

this range the visible spectrum. Immediately below the human threshold of vision is the

near infrared region.[1]

Helmet mounted night vision devices used by aviators intensify available light. More

specifically, they intensify -he light which is reflected from an object The amount of

light reflected from an object is called luminance. An object's luminance is a function of

how much light is striking the object, the illuminance, dad the reflectivity of the object.

With the same illuminance, a light object such as snow will have a greater luminance than

a dark object such as an asphalt road. Prediction of night vision device's efficiency is

confined to the prediction of the illuminance of all objects in a certain area regardless of

their reflectivity and resultant luminance. Illuminance is expressed in Lumens per square

meter, or Lux. One Lux is equal to 0.0929 foot-candles. Table I shows the relative

illuminance of various sky conditions.[1]

5

" A - - -:

TABLE 1. ILLUMINANCE LEVELS OF VARIOUS SKY CONDITIONS

Sky Condition Approx. Illuminance (Lux)

Direct Sunlight I - 1.3 x 105

Full Daylight (not direct) 1 -2 x 104

Overcast Day 103

Very Dark Day 102

Twilight 10

Deep Twilight I

Full Moon 10-1

Quarter Moon 10-2

Moonless, Clear Night Sky 10-3

Moonless, Overcast Night Sky 10-4

Solar light, light emanating from stars, the moon, and other solar phenomena, is

principally comprised of wavelengths outside the visible spectrum. For this reason, Night

Imaging Devices are designed with their principle sensitivity outside of the visible

spectrum and more into the near infrared spectrum. Figure 1 illustrates the relative

wavelengths of human visible spectrum with that of the night sky and two modem night

vision devices.[1]

6

rS-6

400 450 500 550 600 650 700 750 800 850 900 950

Wavelength (nanometers)

Figure 1. Comparison of visible spectrum versus night vision devices

The third generation AN-AVS6 Night Vision Goggles (NVG) are sensitive in an area

well outside of the human visual spectrum. This greatly enhances their ability to amplify

ambient light at night, but it hinders our ability to predict their efficiency as discussed in

the next section.

B. PROBLEMS WITH ILLUMINANCE PREDICTION

1. Spectrum Selection

Modem illumination algorithms are designed to predict illuminance, the amount of

visible light present There have been no definitive studies to date on the amount of light

presented at the surface of the earth during the hours of darkness in a spectrum other than

that of the visible spectrum. In practice, the United States Military assumes that the

illuminance in the visible spectrum is directly proportional to the amount of light in the

near infrared spectrum.[3]

7

2. Atmospheric Attenuation

Since all light reaching the surface of the earth from the cosmos must pass through

the atmosphere, the composition of the atmosphere has a measurable effect on the

attenuation of that light.

The atmosphere is the most dense at the surface of the earth. As one increases in

altitude the density of the atmosphere decreases. With this decrease in density, the

attenuation effect of the atmosphere is also decreased. For computational purposes, the

atmosphere is considered homogenous to an altitude of 8.46 kilometers. Using this

simplification does not significantly alter the results of illuminance prediction. [4]

3. Altitude Discrepancy

The computation of astronomical phenomena is complicated at altitudes non-

coincident with the surface of the earth. At high altitudes the atmosphere does not

attenuate sunlight or moonlight to the same degree to which it does at sea level. The

apparent rise and set of the heavenly bodies is offset at altitude. A person on the surface

of the earth may observe sun set at the same time a person in ajet at 30,000 feet can still

view the entire disc of the sun.

Generally accepted phenomena such as civil and nautical twilight are also offset at

altitude. Civil and nautical twilight are defined as the time at which the sun is six and

twelve degrees, respectively, below the horizon. As with sun set, there will be more light

at altitude during twilight than their would be on the surface of the earth.[3]

4. Geographic Limits

Although geographic limits may seem trivial, they still affect the prediction of

astronomical phenomena. Astronomical phenomena is predicted relative to a plane which

is assumed to be tangent to the surface of the earth at the observer's latitude and longitude

8

at sea level. This assumption obviates the problems of a person standing on a mountain

or in a valley and thus observing astronomical phenomena at a different time.

Illuminance is predicted assuming that the earth is visible to the source of

illumination at the desired moment in time. For example, if a full moon has just risen and

is currently only ten degrees above the horizon, a person on one side of a mountain will

be fully illuminated. A person on the other side of the mountain would still be in

darkness. Shadowing and obscuration is not addressed by the prediction algorithms. It is

incumbent upon the user of the algorithms to understand the limitations of the

predictions.

5. Meteorology

Cloud formations, fog, smog, and other obscurants in the sky will attenuate the

amount of light impinging upon the earth from celestial sources. It is possible to account

for this attenuation in a computer program, but it requires the end user to determine the

quantity of attenuation. Since most end users will not have equipment capable of

measuring cloud density, MOONLITE does not allow the user to apply an attenuation

scaling factor. Aviators must use the experience gained during their NVG qualification to

determine the amount of NVG degradation due to meteorology.[1]

6. llluminance

Illuminance, as described above, refers to the amount of light being shed on an

object. MOONLITE predicts the amount of light available from astronomical sources.

An NVG user, though, may have artificial light available from a nearby city or town, or

from battle field illumination, burning oil wells, etc. It is impossible for a predictive

program to consider the myriad of artificial sources of light that might be present. Again,

9

tom NVO t=~ mm urn hWs or haer xpefce to determin the amout of ih~t aailale.

for NVG use.

l0

M. ALGORITHMS

A. FAST VERSUS ACCURATE

MOONLITE uses two different sets of algorithms for determining celestial

phenomena. The fist set of algorithms is referred to as the fast algorithms and are

iterative in nature. These algorithms are found in the United States Naval Observatory

Circular No. 171. The fast algorithm's most glaring shortcoming is that it diverges at

latitudes above 60 degrees north or south.[51 This divergence can manifest itself as a

complete miss of a phenomena such as sun rise. A more subtle error, however, could

occur where the algorithm produced output that although flawed, appeared to be correct.

The fast algorithms are not used for prediction above 60 degrees north or south latitude.

The other set of algorithms is referred to as the accurate algorithms. The accurate

algorithms are currently being perfected at the United States Naval Observatory. These

algorithms are interpolative in nature and will produce accurate output at any location on

the earth. There is a trade off in processing time between the two algorithms. The

accurate algorithms take substantially longer to compute an event than the fast

algorithms. [3]. Although an advance copy of the accurate algorithm has been obtained

prior to the completion of this thesis, they have not been implemented due to current

instabilities which are being corrected by the Naval Observatory. MOONLITE was

written to facilitate the accurate algorithms as soon as they are available. The remainder

of this thesis will therefore deal with the fast algorithms.

B. ACCURACY

The design goal of the fast algorithm was to identify a phenomena within 0.5 degrees

of its actual azimuth and altitude. The maximum temporal error, assuming a 0.5 degree

error in placement, would therefore be two minutes. The temporal values are relative to

11

the mean time of the selected time zone. Each time zone (with variations for political and

geographic anomalies) is fifteen degrees wide. Phenomena are computed using the time

in the center of the time zone. An observer can expect a divergence from the predicted

times relative to their distance from the center of the selected time zone. 3]

Rounding of numbers may cause discrepancies larger than the target goals in some

cases. Consequently, the last digit of angles and times should be considered uncertain.

[3]

Illuminance is given in Lux, and should be accurate to one or two digits. Due to local

conditions (artificial light, meteorology, etc.) the calculated illuminance may differ from

the actual illuminance by a factor of 10 or more.[3]

The Moon's apparent phase is independent of Earth's atmosphere, but approximations

in the equations for calculating it may produce errors of one or two units in the computed

quantity.42]

MOONLITE was coded with all variables and constants defined as "double", thus

internal computer "accuracy" is carried out to 64 bits using the IEEE real standard. This

format allows representable numbers between -2,147,483,648 and 2,147,483,647. [A]

C. ALGORITHM OVERVIEW

1. General

The fast algorithm is presented in reference [3]. The algorithm is presented in

BASIC and FORTRAN. In order to make MOONLITE platform independent, it was

necessary to code MOONLITE in C++-. Originally, compiling the FORTRAN code and

linking it into a C++ user interface was contemplated, but this approach was rejected due

to possible incompatibilities in multiple platform object code.

12

The FORTRAN and BASIC code was converted to C++ code for inclusion in

MOONLITE. To aid in maintenance and debugging, the algorithms are designed as a

separate class of MOONLITE named fas talgorithm. The C++ code for fast-algorithm

may be found in Appendix A.

2. Coding Consideratiosm

If one examines the original BASIC code and the MOONLITE code for the

fast algorithm class, one will notice that the MOONLITE fast_algorithm class does not

use subroutines. This is contrary to modem modular programming technique, yet seemed

advisable for MOONLITE. Using passive profiling techniques, the fast_algorithm was

identified as a computationiliy intensive, and thus time consuming, component of the

MOONLITE program. Since the algorithm is somewhat linear in flow, it was coded to

minimize loop iterations and subroutine calls, and thus maximize runtime efficiency.[7]

By removing the subroutines and placing them "in-line", the code increased in

length from 225 statements to 233, but it also removed 49 GOTO statements and 20

GOSUB statements.

Each GOSUB statement would cause a context switch with attendant overhead.

The GOTO statement in GWBASIC, the language MOONLITE's predecessor was written

in, is implemented by a linear search algorithm. MOONLITE uses structured

programming to remove the GOTO statements. This structured technique allows the

compiler to place a hard coded jump address in the machine code versus an iterative

algorithm which takes multiple lines of machine code to implement

Where possible, code was hand optimized while converting from BASIC to C++.

For example, in the original BASIC code are the following lines:

340 FORL -ITO4 (I)
350 ON L GOTO 370, 650, 650, 360

13

TINS was replaced with:

hr ONL - 1; L<- 4; L+)((2)
W(Lin4) c -347.81;
If((M-1)3(1i'm4)) 1

S- 0.5 + Y;

//bode hr BASIC Umn 650 pa hue

This rewiftin of the BASIC code removes four GOTO statemens and replace

them with two IF swaements. Since the GOTO statements caus an iteative loop of

nmay cycles wheras thie IF statements do wot, the Isuer code is markedly fatster

14

IV. TESTING AND VALIDATION

A. TESTING

1. PNdamdo

During the translation of the fast algorithms from reference BASIC and

FORTRAN to the C++ code of MOONLITE, constant testing was performed to ensure

parallel results. For two randomly selected cases, the BASIC code and C++ code was

stepped and compared line by line to ensure matching results after each statement.

Results between MOONLITE and LITELEVL are not exact. Discrepancies have

been traced primarily to the way the two languages handle the trigonometric functions.

Discrepancies manifest themselves as a difference in time of one minute or less. During

initial testing, when a discrepancy was found between the BASIC handling of a SIN

function and the C-++ handling of the function, the calculation was run on an HP48SX

calculator and on MATLAB V4.0 to compare results. In all cases the results of the HP

calculator and of MATLAB matched the results of the MOONLITE C++ code. Thus, the

MOONLITE C++ code is considered to be more accurate than the original BASIC code.

Reference [5], table A, presents test cases for program certification. MOONLITE

was tested locally against these standards and found to be within one minute of time and

within 0.5 degrees to all parameters. This is within design specification, and thus shows

that MOONLrIE's C++ code is functioning properly.

2.LF Mm

Prior to release, MOONLITE will be tested against the United States Naval

Observatory test suite. The Naval Observatory has determined a number of test

conditions which will test boundary conditions in the program. These boundary

conditions are the most ill-conditioned points the program can be expected to handle.[3]

15

B. VALIDATION

Upon completion, MOONLITE will be tested at the Unites States Naval Observatory

by the Astronomical Applications Division. After successfully completing their tests, the

program will be validated by the Observatory for use by the Department of Defense.

16

V. USER INTERFACE

A. GENERAL

There were four main criteria envisioned for the user interface. They were:

* Must be relatively intuitive
"* Must be graphical
"* Must be transportable
"* Must minimize input errors

To ensure that these criteria were met, MOONLITE was developed in Microsoft

Windows using Borland C++ version 4.0. Standard Windows conventions were adhered

to, for example, the upper left hand comer of a window contains a control box which will

allow the user to minimize, maximize, move, or close the window.[8]

B. MENUS

All menus are standard pull-down menus allowing the user to select an option by

clicking on that option with the mouse. Menus were designed as "sticky" menus, i.e. the

user does not have to hold the mouse button down to keep the menu active. Menus may

be accessed without a mouse by pressing the ALT key and the first letter of the menu

choice. For example, the user may activate the FILE menu by pressing ALTF.

MOONLITE's menus are only one level deep. This was a conscious design choice to

ensure the most simplistic and thus most easily understood user interface.

C. DIALOG BOXES

Almost every menu choice leads to a dialog box. Each dialog box contains a HELP

button which will activate context sensitive help for that dialog. Currently, context

17

uaiveh*l is disabld during renearh into thie porability of Mficrosoft Windows help

18

VI. CODING CONSIDERATIONS

A. LANGUAGE CHOICE

MOONLITE was written in Borland C++ version 4.0. This language was chosen for

a number of reasons. First, C++ is the most ubiquitous object-oriented language in use

today. MOONLITE was written using object-oriented techniques in order to facilitate

future maintenance and upgradability. Second, NAVAIR has expressed interest in

interfacing MOONLITE with TAMPS (Tactical Air Mission Planning System) and

TAMPS is written in C++. Third, multiple platform libraries were available for C++.

Borland's product was chosen as development suite because of its enhanced development

and debugging tools.

B. UBRARIES

ZAPP libraries were purchased from Inmark corporation for the development of

MOONLITE. Inmark currently supplies libraries for Microsoft WindowsTm , Microsoft

Windows NTTM, Microsoft DOST ' (graphics mode), Microsoft DOSTm (text mode), IBM

OS/2 Tm, UNIX MOTIF"T, and in the near future for Apple MacintoshTM. Using these

libraries, it is possible to recompile source code written to take advantage of the libraries

for a different platform with out re-coding. This saves development cost and presents the

end user with a consistent interface across multiple platforms. Currently, MOONLITE is

compiled only for Microsoft WindowsTm .

C. PROGRAM STRUCTURE

1. Control Hierarchy

MOONLITE is an event driven program. Event driven programs perform no

function until prompted by an event. MOONLITE, once running, simply waits for the

19

V1
user to initiate an event. The most common event will be a menu choice, but it could also

be a window resize, move, or termination.

The top level of the MOONLITE program is the event handler. The event handler

fields all events and then instantiates and sends a message to client classes as needed. A

hierarchy of events is shown in Figure 2.

MeMu choke lmdow Action

0 Move

Switch To

-- o OPEN COPY EDIT SPOT DETAIL KEOARD
SAVE DELETE POSITION CHART -COMMANDS
SAVE AS LIb DAILY EVENTS PROCEDURE
PRINT USINGHP
PAGE SETUP L AOUT
PRINTER SETUP

Figure 2. Event Handling Hierarchy

The single level menuing of MOONLITE is evident from Figure 2. Each menu

option is modal in MOONLITE, i.e. another option cannot be chosen until the user is

20

finished with the current option. Rewriting MOONLITE to handle MDI (Multiple

Document Interface) may be an option for future enhancement.

It is important that programs written to operate in a multitasking environment,

such and Microsoft Windows or UNIX, be event-driven. An event-driven program will

"sleep" when it is not fielding events. This allows maximum processor utilization since

the program is not executing a "busy-loop" or polling for user input and thus allows other

processes to execute while it is waiting for an event.[7j

2. Classes

As stated earlier, MOONLITE is written using object oriented techniques. Object

oriented programming consists of encapsulating member functions and variables in a

class, the instantiation of which is an object. The basic class hierarchy of MOONLITE is

shown in Figure 3.

Figure 3. Class hierarchy of derived classes

21

The base class from which most other classes are derived is zEvH, the event

handler. Derived from zEvh is zWindow and zFrameWin. ZFrameWin is a class which

when instantiated and given focus presents a standard windows frame on the monitor.

This frame can not hold text or graphics, but it can hold other windows which do hold

text and graphics. ZFrameWin's purpose is to create a standard Windows window

capable of resizing, moving, minimizing, maximizing, and terminating. [8]

Derived from zFrameWin is zAppFrame and MenuFrame. ZAppFrame is a

special zFrameWin which is designed to be the topmost window of an actual application

such as MOONLITE. Code segment (3) illustrates the code used to instantiate the upper

level application window for MOONLITE.

MenuFrame *mainWnd-'nw MenuFrame(Onew zSizer(10,I0,625,520),zSTDFRAME,"MOONLITE); (3)

Code segment (3) instantiates a new instance of a class of MenuFrame with an

attendant pointed called mainWnd. In its constructor, it sets a default window size using

the class zSizer. In this instance the windows upper left hand comer starts at pixel 10,10

and ends at pixel 625,520. This size is aesthetically pleasing for a standard 1024 X 768

pixel display.

After instantiating the main application window the menu items are added. The

menu itself was created using the resource workshop of Borland C++. Using the resource

workshop, a description of the desired menu is created then passed to the main

application window for display. Code segment (4) shows the only MOONLITE line of

code needed to attach a menu to the parent application.

mo(naw zMnu(*is, zledd(MENU-_W)); (4)

22

I li i el I I I I I II I I

Code segment (4) instantiates a new zMenu and passes an identification number to

the constructor. This identification number is assigned to the menu resource and is a

method of uniquely identifying resources. A portion of the menu description is shown in

code segment (5). One can see that the menu description includes the displayed title of

the menu item, its parent menu item, a control key keyboard shortcut if available, and an

identity number to be passed to a function should that menu item be called.

POPUP "AFiI." (5)

MENUMFEM -&New-. ID MENU FILENEW
MENUITE4 *&Op=u. '. IDJ4ENUJ[LEOEN
MENUTEM '&Save-, ID MENUJFIESAVE
mENUrTEm -sav &mL..". 1ID MENUFLMESAVEAS
MIENUITEM4 SEPARATOR
MENUfIMBO WArIaL..", IDYENUALFIEPRINT, GRAYED
MENITEM -Paep betup...-, ID MENU FiEAEEUGRAYED
mENUITEM "Pifuler fetu..., I EUJILEPRINTERSETUP, GRAYED
MENUITEM SEPARATOR
MIENfL!TM "Eftit", ID MENU F1LEEXF

In order to have our desired function called when menu item is selected, it is

necessary to override the default event handler for each menu item. Code segment (6)

illustrates how the event handler is overridden.

0 nu-'-s iothls*,(ConuuuuiProc)&MenuFrune::doExitD MENUFILEEXIT); (6)
fmeuo->*setanradkth,(CommmdWroc)AMeuFrme:.Add~ocuiaDMENU LOC$_ADD);

p jo',t~ommndhis,(CenunmndProc)&MecnuFrune::EditLocniionjD MENULOC$EDnT);
ma*,jtomenu (tbsCornmduoc)&MenuFrune::DelesLocadoa.IDyNULOLCS DELETE;

0 mio ithis,(kbCommmndProc)AX~enaFrune::Fi~eSaveJDMENU FILE5AE);
menuo-.'setCouunaadhia(Comrna~c)&MmeuFmne::]FiketpnDMENUFIEOFEN),
mmumo-se Con d~his,(ConnundProc)&Meaumrfn::FileNew,ID_.MENtLUFILNE;

p Z (*ýdids,(Co~mnmadPrc)AMemFrrn::Spotd*aID MNU_5LPOTDATA);
p tfl -ommm(dds6(Commdhc)&MemzFrune::Event,DMNU.DA1LYEVENTS);

mwA~~mmf(Coummmurue:PoeidonIDME:PwiNUMPMPOSMON);

Here again we see an identifying number passed to each function in the form of a

descriptive name. The file defines. h contains a list of all identifiers used in MOONLITE

and their corresponding numeric identifier. Numeric identifiers are arbitrarily chosen. In

MOONLITE each logical grouping is given its own hundreds digit identifier with

23

nmebe" items being numbered sequentially. Code Segment (7) is an example of some

identifiers from defimws.h.

UOMbELLUMAIN 100 (7)
dtsflw ID_.ENU-PaMIU 118
dM IDI•U_•VVIBNEW 101

#dbs IDLVW..FILef 102
"Ohms ID..ELbW LEXSAVE 103
Nibs ID.)ENIJJILESAVEAS 104
#dAW IDj4WMF11179IE TD 105
Nib IDMENUFnMAGESETUP 106
Oibs ID_)1ENUM.FILMESMW 107
ONftib DLMENU-MLEEX1T 108

In C++ each define is substituted by its defined value at compile time. Thus

IDMENUFILEEXIT is replaced at compile time by the number 108. Using "define"

statements makes the code more readable and decreases the chances of assigning a wrong

identifier to a function.

Each menu function instntiates a type of zFormDialog. MOONLITE handles all

input and output through the use of dialog boxes. This technique allows the end user to

size and move output windows on the monitor to suit their individual taste. There are

eight dialog classes. Each dialog class begins with "CQdlg" to identify it as a class and a

dialog. These classes are examined in the next section.

3. Program Flow

When a user selects a menu item, that item's corresponding class is instantiated

and called. Focus is passed to that class (always a dialog) and retained until the dialog is

closed and deleted. As an example of program flow, we will trace the flow of the menu

selection RUNMSPOTDATA.

When a user initially runs MOONLITE, the program places itself in memory and

attempts to read a file called moonlite.dat. If that file is not found, MOONLITE presents

a warning message to the user telling them that the data file was not loaded. If the file

was found, MOONLITE loads the locations stored in moon/lte.dat into a linked list. This

24

linked list is passed to all of the dialogs from this point on in the program. Each dialog

requires that the user select a location for which they would like output. Using a linked

list allows a (theoretically) unlimited number of locations to be stored by

MOONLTE.[l 0]

Once MOONLITE is initialized, it waits for the user to generate an event. In this

case we will assume that the user points to the menu item RUN and selects the member

item SPOTDATA. From code segment (6) we see that menu item

IDRUNSPOTDATA is associated with event handler MenuFrame::Spotdata.

MenuFrame::Spotdata is comprised of the following code:

Maudrne::SpotDua: o uawdEvt Soe) (8)(
rout sine %nge- new roudnes(;

ddee cogine;

MenuFrame::Spotdata creates a new object of type routines, and assigns a pointed

named "engine" to point to that object. Notice that "'I" the linked list of locations was

passed to the class "routines" as part of the constructor. Once the class is instantiated as

an object, the object is sent the message "spotdata".

The code associated with routines::spotdata is shown in code segment (9).

rouins::spotdatO (9)

"C.dlLespotdots dLspat - new C-dILspodaWLt, zRasld(SPOT.DETAIL));delete dILspx;

Here again, this object creates a new object of the type CJdlLspotdata. This is

our dialog and the location where MOONLITE will interact with the user. Since

CJdlLspotdata always accomplishes the same task, the bulk of the user task is included

in the constructor of the class and is automatically executed.

25

The code for Qdlg.spotdata is too lengthy to list here, but it is included in

Appendix B. CdlLspotdata creates a dialog box with the necessary controls to prompt

the user for the required input. It also contains read only controls for the display of

output.

Like the main application, the dialog box for C dlg.spotdata is event driven.

Once instantiated, it waits for the user to generate an event. Assuming that the user

wishes to continue with the spotdata, he or she will (in any order) select a location, a date,

and a time. Each time an event is generated, Cdlg.spotdata examines the event and

takes action on it. If the user selects a location, the dialog updates its internal variables

with the data from the selected location.

The dialog has built in error reduction. A user may only choose the options that

are available. He or she may not input anything from the keyboard. For example, the

months of the year are presented to the user in a pulldown selection box. The user may

only choose one of the twelve months. Once the user selects one, the dialog will analyze

the choice and change the remaining dialog boxes to reflect that choice. For example, if

the user selects "January", the dialog will change the possible selections of the day to

include 31. If the user selects "February", the dialog will check the year to see if it is a

leap year and present the appropriate number of days for the user to select. This pseudo

real-time error checking reduces the number of errors a user can create. If a user should

select the 29th day of February and later change the year to one that was not a leap year,

MOONLITE will clear the day selected and highlight the day control to indicate to the

user that they must select a new day.

Once the user selects a location, MOONLITE will compute the desired data on the

fly each time the user changes a control. MOONLITE accomplishes this by examining

the complete data set of the dialog box each time the user generates an event. Actually,

26

MOONLITE waits until the user completes an event, but to the user that is invisible. If

the dialog is complete, i.e. the minimum number of controls to produce meaningful

results have been selected and properly activated, MOONLITE instantiates the algorithm

and passes the data to the new instantiation. When the algorithm returns the data,

MOONLITE passes that data to the dialog's read-only controls for display.

When the user selects the DONE button, MOONLITE backs out of each class

calling its destructor and freeing any memory used by that class. At this point

MOONLITE is again in its initial state and waits for another event.

By designing MOONLITE to always return to its initial state, memory

requirements are kept to a minimum. MOONLITE does not "hold" any memory aside for

data storage or for computations. All memory requests are dynamic with the current

event. MOONL1TE was written to reduce its memory requirements after every operation

for several reasons. First, when operating in a multitasking environment, MOONLITE

ensures a maximum amount of memory available to the other processes. Second, when

operating in a single task environment such as DOS, it is possible to overlay different

class instantiations and therefore allow MOONLITE to operate in a much smaller

memory area. MOONLITE therefore has a minimum impact on multitasking systems

such as Microsoft windows". [7]

4. Calendar Optiuization

One of the most used functions of LITELEVL, and thus of MOONLITE is the

planning calendar. The planning calendar presents the user with a graphical

representation of illuminance levels for an extended duration. A typical request for the

calendar option is to print the illuminance levels for a specific location from sun set to

sun rise every night for a six month period. Calculating the calendar is the most

27

PCOr intansive procedum MOONLITE must accomplish. The old LITELEVL

program frequently took more than a minute to compute one line of the calendar. One

line conesponds to one nights worth of data. Inspection of the LITELEVL code reveals

that besides using time consuming GOTO and GOSUB statements, the program used a

brute force method of computing the calendar line.

LITELEVL attacked a planning calendar line in the following fashion: First, it

computed the daily events for the current day. Then it computed the illuminance every

ten minutes from 1700 until 0800 the next day, 82 points total. It then computed the

daily events for the next day.

MOONLrTE uses a more dynamic approach to the problem. MOONLITE first

calculates the daily events for the current day. This calculation results in the sun rise, sun

set, moon rise, and moon set. Using this data, MOONLITE compares the sun set time to

the moon rise time. If the moon rises after the sun sets, MOONLITE automatically fills

in the calendar line with the appropriate symbols to show that either the sun was still

above the horizon or that the moon had not yet risen. If the moon rises after midnight

MOONLITE fills in the entire first half of the calendar line with the symbol for the moon

having not yet risen. If the moon rises before midnight, MOONLITE fills in the symbol

for moon not risen up to the time of moonrise. From this point until either moon set or

sun rise, MOONLITE uses a modified binary search algorithm to determine the state of

illuminance.

Aviators only wish to know four conditions on a planning calendar: the sun is

above the horizon, the moon is below the horizon, the sun is below the horizon and the

illuminance is below a threshold, or the sun is below the horizon and the illuminance is

above a threshold. Once the moon has risen, MOONLITE computes the illuminance for

the first period. MOONLITE allows the user to select the period between calculations.

28

LITELEVL only calculated at ten minute intervals. MOONLITE then jumps four

blocks forward and calculates the illuminance. If the illuminance results in the same

category as the illuminance four blocks prior, MOONLITE fills in the sandwiched

intermediate blocks with the same symbol. If the illuminance results in a different

category, MOONLITE jumps back two blocks and computes that illuminance symbol. If

the symbol is the same as the first symbol, MOONLITE fills in the second block with the

same symbol and computes the third block. If the symbol is different from the first

symbol, MOONLITE computes the second block. MOONLITE then compares the

second block to the fourth block. If they are the same, if fills in the third block. If they

are different, if computes the third block.

Using this jump and evaluate method, similar to a binary search, MOONLITE

dramatically reduces the amount of calculations needed for each line of the calendar. At

a minimum, if the moon never rises, MOONLITE will make no iiluminance calculations

and two daily event calculations. On the average, MOONLITE appears to make

approximately seven illuminance calculations per calendar line.

Since both LITELEVL and MOONLITE make two daily event calculations per

calendar line, we can compare the illuminance calculations for a rough indication of

output speedup between LITELEVL and MOONLITE. LITELEVL always makes 82

calculations per line. Thus MOONLITE is 82/7 as fast as LITELEVL, or accomplishes a

speedup of a little over eleven times the output speed of LITELEVL.

MOONLITE also enjoys a performance increase from the use of Borland's C++.

The C++ language is an extremely terse, compact, and efficient language. Borland's C++

compiler uses a number of optimization techniques such as common subexpression

elimination, copy propagation, and invariant code motion to further increase the runtime

efficiency of the code. The final version of MOONLITE will be available in processor

29

specific versions which will optimize MOONLITE for use on that processor. The

processor specific versions will take advantage of optimization techniques such as

strength reduction and branch offset optimization. [5]

Figure 5 shows a single line from the planning calendar for a location at 36

degrees, 35.2 minutes north, 121 degrees, 50.6 minutes west on the 4th of November,

1993 with an offset of eight hours from Greenwich mean time. Figure 5 illustrates the

order in which MOONLrTE would analyze the example calendar line. Even though

MOONLITE uses ten calculations on this line, it is still far faster than LITELEVL which

calculates 82 points.

The jump MOONLITE makes between calculations nine and ten deserves

explanation. MOONLITE compares every point prior to midnight to the point at

midnight As soon as there is a match, MOONLITE fills in the symbols and jumps to the

first block after midnight. MOONLITE compares every point after midnight to the last

point prior to sun rise. Again, ,s soon as there is a match, MOONLITE fills in the

symbols between the two points. In our example, the symbol just after midnight and the

symbol just prior to sun rise match, therefore MOONLITE fills and finishes.

From this example one can see that MOONLITE must make more calculations

when the moon is most dynamic and fewer calculations when the moon is fairly static.

The moon is most dynamic relative to the higher latitudes. Above sixty degrees north or

south latitude, the moon could rise and set many times during a night Indeed, at the pole,

the moon could "hover" right on the verge of rising and setting. [9] Because of the ill-

conditioned behavior of the moon at high latitudes, MOONLITE only uses this pseudo

binary search routine with the fast algorithms at latitudes less than sixty degrees.

30

I*

* I -

2 a6

a Ia

- I I

I II

- I

_ I
I=• x I

I.,-

Fi•Ic .n xapl f OOLIE' peuo iar4sarh lgrih

I1

VIL FUTURE WORK NEEDED I UPGRADES

A. FUTURE WORK NEEDED

MOONLITE is not fully complete at this time. Although fimctional, some menu

options and button choices are not activated. Per an agreement with the Naval Air

Warfare Center in Warminster, Pennsylvania, the author will continue to work on the

MOONLITE project at his next duty station to complete the MOONLITE project.

The following items need to be completed:

* Write PAGE SETUP routines

0 Write PRINTER SETUP routines

0 Write PRINT function

* Activate EDITICOPY to allow copying data to Windows clipboard

* Activate context sensitive help

0 Implement accurate algorithms

With the exception of implementing the accurate algorithms, all of the items

remaining to be completed are dependent upon cross-platform considerations. For

example, the PAGE SETUP, PRINTER SETUP, and PRINT routines can all be

implemented using a single windows call each in Microsoft WindowsTm. When

MOONLITE is ported to Microsoft DOSTm, however, these calls will not be available.

The author is awaiting receipt of DOS libraries prior to writing these routines to ensure

their ability to compile both under Microsoft Windowstm and Microsoft DOSTm.

32

B. FUTURE UPGRADES

During the design phase of MOONLITE, numerous Marine Corps and Navy pilots

were queried regarding their desires in a program such as MOONLITE. From their

responses, a list of future enhancements is proposed.

* Allow Dynamic Data Exchange from MOONLITE

* Add an option to print a graphical representation of moon azimuth and
altitude versus time.

* Compile MOONLITE for use on the Apple Macintosh"'.

33

APPENDIX A: USER'S MANUAL

Introduction
Welcome to MOONLITE!

MOONLITE is a computer program that predicts the normal daily
celestial events such as sunrise, sunset, moonrise, moonset, and the
phase of the moon. Additionally, MOONLITE calculates the
amount of light being cast upon the surface of the earth from the
sun, moon, and stars.

This initial release of MOONLITE is written to run within
Microsoft Windowsa. Depending on the need for such versions,
fiuture versions of MOONLITE may run on Microsoft DOS?, on
the Apple Macintosh•, and on UNIX-based workstations under
MOTIF. Users of MOONLITE will experience a familiar
interface regardless of which platform they use.

MOONLITE is distributed on a single 3V2", 1.44 Megabyte
diskette and requires Microsoft Windowsa version 3.0 or higher to
run.

MOONLITE was developed at the United States Naval
Postgraduate School in Monterey, California by Captain Michael
T. Lester with advice and guidance from Doctor Douglas J. Fouts
and Doctor Paul M. Janiczek.

34

Questions regarding the programming or operation of
MOONLITE, reports of bugs (I hope not!), or suggestions for
future enhancements may be sent via E-mail to
"moonlite@ece.nps.navy.mil".

I have endeavered to make MOONLITE as user-friendly and
efficient as possible and hope you enjoy its use.

35

Whats New!

MOONLITE is a completely new product!

The following is a list of MOONLITE's new features:

"* Runs under Microsoft Windows
"* Graphical User Interface
"* Stores locations for future use
"* Optimized
"* Variable time periods in Calendar and Position Chart

MOONLITE runs under Microsoft Windows. By writing
MOONLITE to run under Windows we were able to take
advantage of Window's Graphical User Interface (GUI) assuring
you, the user, the most intuitive, easily used interface available.

MOONLJTE's Graphical User Interface takes advantage of pull-
down menus, dialog boxes, hot-key activation, and window sizing.

MOONLITE allows the user to store a virtually unlimited number
of locations for future use. Multiple data files may also be used.

MOONLITE is optimized. MOONLITE is based on the same
algorithms used by LITELEVL and SLAP, but they have been
optimized and implemented in a way that ensures the fastest most
accurate data available from these algorithms. MOONLITE was
written using the most modem programming techniques which has
resulted in a response time that is ten times faster than the old
LITELEVL program.

36

Whats Not New!

MOONLITE uses the same algorithms as Litelevl and SLAP.

The output of the Position Chart and the Planning Calendar are
unchanged. This was a conscious design decision. We believe that
most users of MOONLITE are so familiar with the output of
Litelevi that changing the format would be counter-productive.

37

General
MOONLITE is distributed on a single 3V2", 1.44 Megabyte
diskette. The disk contains the following four files:

I. MOONLITE.exe The MOONLITE program
2. MOONLITE.dat A data file of pre-loaded geographic

locations
3. MOONLITE.doc A Winword copy of this document
4. Setup.exe The MOONLITE setup file

Installing MOONLITE on your Hard Drive

I. Start Microsoft Windows.
2. Place the MOONLITE diskette in the disk drive.
3. Open the "Main" Group by double clicking on the group

entitled "Main" in the Program Manager.
4. Open the File Manager by clicking on the file manager icon

in the Main group.
5. Click on the appropriate drive letter for your machine. On

your machine, it may be drive A or drive B.
6. Double click on the file entitled "setup.exe" in the drive

window.

Or,

1. Choose the menu option FILE I RUN from the Program

2. Type in "A:\-tup.exer or "B:setup.exe" depending on
which drive your MOONLITE diskette is in.

38

Setup

MOONLITE's setup program will perform the following tasks:

1. Create a directory on the C: drive called "MOONLITE"
2. Copy the files from the A: (or B:) drive to the newly

created directory
3. Create a program group called MOONLITE
4. Place an icon for the MOONLITE program in the

MOONLITE group

39

Running MOONLITE

From the Hard Drive

After installing MOONLITE using the Setup program as described
above, MOONLITE may be run by double clicking on the
MOONLITE icon.

From Diskette

MOONLITE may be run from a floppy diskette although loading
time will be greatly reduced if the executable file,
MOONLITE.exe, is placed on your hard drive.

To run MOONLITE from the diskette:

1. Start Microsoft Windows.
2. Place the MOONLITE diskette in the disk drive.
3. Open the "Main" Group by double clicking on the group

entitled "Main" in the Program Manager.
4. Open the File Manager by clicking on the file manager icon

in the Main group.
5. Click on the appropriate drive letter for your machine. On

your machine, it may be drive A or drive B.
6. Double click on the file entitled "moonlite.exe" in the drive

window.

Or,

1. Choose the menu option FILE I RUN from the Program
manager

2. Type in "A:\moonlite.exe" or "B:\moonlite.exe" depending
on which drive your MOONLITE diskette is in.

40

MOONLITE was designed to be as intuitive and user friendly as
possible. When you first start MOONLITE you will be presented
with the main MOONLITE screen seen below.

BIG Edit Lsafm Bm 41

41

MOONLITE has five main menu choices: File, Edit, Locations,
Run, and Help.

Unlike MOONLITE's predecessor, LITELEVL, MOONLITE
allows the user to store geographic locations for future use. As a
matter of fact, MOONLITE demands that the user load a location
prior to use. This feature saves the user from looking up the
latitude and longitude over and over every time they run the
program. It also ensures that the user receives the data for the
same latitude and longitude once they select a location.

When MOONLITE is first started, it looks for a file called
"MOONLITE.dat". This file contains the geographic locations
that have been previously stored in MOONLITE. There is
theoretically no limit to the number of locations a user can store.
The maximum number of locations a user can store is determined
by the amount of memory the user has available. If MOONLITE
can not find the data file, it warns the user that the data file is not
found.

O Moontte.dat not found.
No locatons loaded

If you see this warning, it means that the file "moonlite.dat" was
not located in the default directory nor in your current path. By
clicking on the "OK" button, MOONLITE will continue to load
and nim.

In order to allow the user to maintain geographic locations in
logical groups, MOONLITE allows the use of of many data files
although only one file may be in use at any time. By pulling down
the FILE menu from the main MOONLITE screen, the user may
choose to open a new data file or save a current data file.

For the time being, we will assume that the default data file
"moonlite.dat" was loaded when MOONLITE was first started.

42

Since there are a number of locations pre-loaded with the
MOONLITE program, we can proceed directly to the RUN menu
to get our first results.

Clicking once on the RUN menu displays the output options that
are available from MOONLITE. Lets find out when the Daily
Events take place today. Click on the option "Daily Events".

MOONLITE now displays the dialog box for daily events. This
dialog box is used both for you to tell MOONLITE what data you
would like, and for MOONLITE to display that data for you.

O-O
MOOW.- U a am w a - oon O ,--.UM"

-- lrý T-M : U ~~Th~bW =

To determine the Daily Events, MOONLITE Needs to know the
location and the date for which you desire data.

By clicking on the arrow to the right of the box entitled
"Description", the one with "[Choose Location]" in the box,
MOONLITE will display a list of the currently loaded locations.
For this example, click on the location entitled "CA: Monterey".
You can see that as soon as you made your selection, MOONLITE
started giving you data. Right now, that data is for January 1, 1986
since that is the default date. By choosing the date the same way
we chose the location, by clicking on the arrow on the right side of
the combination box and selecting one of the options from the list,
we can view data for any date within MOONLITE's operating
range.

HINT: Combination boxes can be activated by clicking anywhere
on the box, not just on the arrow on the right side.

43

For our example here, choose June 16, 1994. As you finish
selecting the last parameter, MOONLITE has already updated the
information and is displaying it in the lower half of the dialog box.

In this case, the Daily Events dialog looks like this:

•Dp AZ -I o ,-T-

r1 A-t 7-- A*416f 41rEai

-~tCA4QMO- reR- Evw'~mfgNTC* RMU-j-7

Here in one easy to read dialog box we can see the location for
which we desired data, the date for which we requested the data,
and the data itself.

If you wish a print out of this data, you simply click once on the
"Print" button on the bottom of the dialog box. For now, we want
to explore some other parts of MOONLITE, so click on the "Done"
button to return to the main MOONLITE screen.

Let's select the next option without the use of the mouse. You will
notice that all of the menu options have one letter underlined. This
letter indicates the "hot-key" which will activate the menu. By
pressing down the "Alt" key and the letter that is underlined at the
same time, we can activate the menu.

Press the "Alt" key on the keyboard and while continuing to hold it
down, press the "R" key. Now let go of both keys.

You can see that the RUN menu was activated. You will also
notice that each menu option inside of the RUN menu also has a
hot-key associated with it. Since we already have the menu's
attention, we don't need to use the Alt key this time, we only need
to press the letter of the option we want. We have already looked
at the Daily Events, so lets look at the Spot Detail this time. Since
"S" is underlined in the "Sot Data" option, press the "S" key.

44

MOONLITE has responded by bringing us to the Spot Data dialog
box. This dialog box is similar to the Daily Events dialog box, and
we will tell MOONLITE what data we want in the same way.

Lets look at the spot data for Montery, CA on August, 21, 1994 at
9:00 O'clock in the morning.

Choosing the location is done the same as it was in the Daily
Events dialog box, so is choosing the month. When we try to
choose the 21st day, however, we see that the selections only go to
16. We need to scroll the choices down to reach the other dates.
We can do this by clicking anywhere below the position box on the
scoll bar on the right side of the choices, or we can scroll one
choice at a time by clicking on the down arrow on the bottom of
the scroll bar.

But wait a minute! We weren't going to use the mouse this time,
right? You can still enter all of the information. You will notice
that the Location combination box is highlighted right now. That
means that it is active and that keystrokes entered on the keyboard
will affect that control. Since we want to look at "CA: Monterey",
you can press "C" to have MOONLITE jump to the first choice
that begins with "C". Since that isn't the choice we want, use the
down arrow on the keyboard to scroll through the other options.

When "CA: Monterey" is highlighted, we can move to the next
contol by pressing the tab key. When you pressed the tab key you
notice that the focus shifts to the Month box. If you want to go
back to the description box, press "alt-tab".

We enter the desired time in the same fashion.

After we are done, the Spot Detail dialog looks like this:

45

1, N -u TI7 07- Z- .. -

A, ,, (do&.) rM-I- I Admo (dIg) Fil .. I

ANUftd OWa) F-g -3 -dmllkf (dug4 F41

N Pamen " I EAWW@A

TOW U1holanc (Bo. * M..m) Lgga

Just as in the Daily Events, we can press the "Print" key to get a
printout of our data; we can select other dates, times, or locations;
or we can press the "Done" key to end this event.

Go ahead and press the "Done" key. We have more exploring of
MOONLITE to accomplish.

What happens if the location for which we desire data isn't in
MOONLITE's database?

That is easy! We just add it!

From the main MOONLITE Screen, choose the Locations menu
option. The locations menu allows you to Add, Edit, or Delete a
location from MOONLITE's database.

Let's add a location by selecting "Add" from the menu.

MOONLITE presents the Add Location dialog box to allow us to
add our location.

46

Descripion GMT Oltet

Degrees Mimnvts

Laftmde O9[j]®N 0s

Langithade [=00i [ýI 0E (9)W

[Conlorms to Dayligm Savings

Here we need to fill in an english description of the location, how
many hours the location is offset from Greenwich Mean Time, the
location's latitude and longitude, and whether or not this location
uses daylight savings time.

The first item we need to enter is the name of the location we are
adding. The DESCRIPTION box should already be highlighted.
If it is not, we can move to it by pressing TAB to move to the next
box, or SHIFT-TAB to move to the previous box. When the
Description box is highlighted, type the location "Test Location".
We will use this location just to demonstrate. When you are done
typing, press TAB to move to the next field.

The GMT Offset box in MOONLITE allows you to enter a number
with a decimal point. This is useful if the location you are adding
does not conform to the hourly standard. For example, some
places in Norway are offset from Greenwich Time by 45 minutes.
If this were the case, you would enter 0.75 for the GMT Offset.
For most locations, though, you will enter a whole number. Let's
assume that "Test Location" is located in California. California is
offset eight hours from Greenwich Time, so we will enter an "8.0"
in the GMT Offset box and press TAB to move to the next field.

In the Latitude and Longitude boxes values are entered in degrees,
minutes and tenths of minutes. If you have a location specified by
minutes and seconds, you will have to convert to minutes and

47

* i;,,!+. + -• + *'-'F, • ,. -. -*+- - ~ .. . - . , . + ,. . . ._ +, , .. . * + , _

tenths of minutes. This is a simple conversion accomplished by
dividing the number of seconds bu 60. The answer is tenths of a
minute. For example, assume a location of 43* 20' 30". This
should convert to 430 20.5'.

The last field of the Add Location Dialog Box is one entitled
"Conforms to Daylight Savings Time." By checking this box,
MOONLITE will add one hour to all input and output times when
a corresponding box entitled "Use Daylight Savings Time" is
checked on the Spot Data, Position Chart, Planning Calendar, or
Daily Events dialog boxes. If this box is not checked, then even if
you check the "Use Daylight Savings Time", the time will not be
incremented. In this way, you may tag "Use Daylight Savings
Time" when Daylight Savings is in effect and know that only those
locations that conform to Daylight Savings will be affected.

After you have finished filling out the dialog it will look like the
one below. If you are satisfied with the entries, press "Save" to
save this data. If any of the numbers you have entered are outside
of allowed parameters (for example, a latitude greater than 90
degrees), MOONLITE will warn you that an entry was not allowed
and return you to the field that was in error.

Your dialog box may look slightly different depending on what
numbers you input for the latitude and longitude of your "Test
Location".

Desaiption GMT Olfset
TEST LOCATION 1.0

Degrees Minutes

Lattude 3@N Os

Longitude 1 - 0 E •) W

0 Conforms to oaylight Savings

48

We should point out here that the Test Location you just entered is
only stored in memory. It has not been saved to the disk yet. If
you try to quit MOONLITE or open a new location file, you will
receive a warning from MOONLITE that your locations have
changed. MOONLITE will give you the opportunity to save your
changes or to discard them before continuing.

If you want to save the location you just entered, you can use the
menu option FILEISAVE to save all of the locations currently in
memory to the default file moonlite.dat. If you wish to save the
locations in a different file, you can use the menu option FILE I
SAVE AS. SAVE AS allows you to specify a file name and
directory for your data file.

At the time this manual was written, the Position Chart and
Planning Calendar are not fully implemented. Descriptions of their
operation will be added after completion.

49

Menlu Optilons

The File Menu

The File menu contains options for opening and saving location
data files, seting up printer options, printing, and for closing the
MOONLITE program.

The File menu looks looks like this:

File I New

This option is used to create a new locations data file. The new
location data file will be empty. See LOCATIONS jADD to learn
how to add locations to a data file.

50

File I Open

This option is used to open an existing locations data file. When
you select this option, you will be presented with a Windows file
selection dialog box. When you have selected a data file,
MOONLITE will open that file and read the locations into
memory.

File Save

This option is used to save the locations presently in memory to the
hard drive or floppy disk. Selecting this option causes
MOONLITE to overwrite the file that is currently in use. For
example, if MOONLITE is using moonlite.dat for a data file and
you have added locations, then selected FILEISAVE, MOONLITE
will overwrite moonlite.dat with the new locations. All locations
currently in memory will be written to the file. The effect is that
you have just added your new locations to the locations that were
previously stored in moonlite.dat. This is the recommended
method for adding locations to the data file.

File j Save as...

This option is used to save the locations currently in memory into a
file other than the one currently in use. For example, if
MOONLITE is using the file moonlite.dat as a data file, and you
added some new locations and want them saveA4 to a file named
something other than moonlite.dat, you would choose FILEISAVE
AS....

File j Printer setup...

This option allows you to determine the way MOONLITE will
interact with your printer. It allows you to select printers, and to
access their options menu. Using this menu you will be able to
determine print quality and orientation.

File j Exit

This option is used to exit the MOONLITE program. If you have
made any changes to the locations in memory, MOONLITE will

51

- * -.. ,. . .

warn you that your changes are not saved and ask whether or not
you want MOONLITE to save the files for you. You may also
quit MOONLITE by double clicking in the upper-left hand corner
of the main MOONLITE window.

The Edit Menu

The only option available on the Edit Menu is Copy. You may use
this option to copy information displayed in MOONLITE to the
standard Windows clipboard for inclusion in other applications
such as Word processors.

The Locations Menu

The Locations Menu Looks like this:

mEIm

Locations I Add

The LOCATIONSIADD option is used to add new locations to the
list of locations currqntly stored in memory. MOONLITE will
store a (theoretically) unlimited number of locations and is
constrained only by the amount of memory available. New
locations added via the LOCATIONSIADD option are not
automatically saved to disk. To save additions you must use either
the FILEISAVE or FILEISAVE AS options.

Locations I Edit

The LOCATIONSIEDIT option is used to Edit locations already in
memory. To edit a location stored in a data file on disk, you must
open the file for use, edit the desired locations, and save the file
back to disk.

52

Locations I Delete

The LOCATIONSIDELETE option is used to remove locations
from memory. To remove a location from a data file, you must
open the file for use, delete the desired locations, and save the file
back to disk. The LOCATIONSIDELETE dialog box is identical
to the LOCATIONSIADD and LOCATIONSIEDIT dialog boxes
with the exception that the Save button has been replaced with a
Delete button. You select a location to delete just as you do a
location to edit, buy using the pull-down list box labeled
"Description".

The Run Menu

The run menu is the heart of MOONLITE. It is here that you will
choose the output you desire and initiate the dialog boxes for the
different Run options. The Run menu looks like this:

file JdEt Locations

.Spot Detail
_osition Chart

aiyEvents

Run [Calendar

The RUNICALENDAR option is probably the most used option of
MOONLITE. You use this option to generate a light level planning
calendar.

This option is not yet fully implemented and will be further
expounded upon when completed.

Run ISpot Detail

The RUNISPOT DETAIL option is used to access information
about a particular location at a particular time. This option
requires you to choose a location, a date, and a time. It returns the

53

azimuth, altitude and illuminance of the sun and moon, the total
illuminance of the sun and moon combined, and the phase of the
moon.

You may choose to look at many different locations, dates, or
times before closing this dialog. Each time you change any
parameter, MOONLITE will recalculate the data on the fly and
display the results. When you are finished with the dialog, click on
the DONE button.

If you wish a print-out of the data, click on the PRINT button.
MOONLITE uses the default printer selected for Windows.

A HELP button is provided should you have any question about
any option or parameter in the Spot Detail dialog box.

rC 1---- MOTM

"rmom -S"n

Aui~uS(deg.. liiiAdM~f (is,) au

Abd w~u (dS.) Mom)is(:g)

Run I Position Chart

This option is not yet fully implemented and will be further
expounded upon when completed.

54

Run I Daily Events

The RUNIDAILY EVENTS option is used to access information
about a particular location. The option requires you to select a
location and a date. MOONLITE will respond with the time of
Sunrise, Sunset, Moonrise, Moonset, meridian passage of both the
sun and moon, and the times of the beginning and end of civil and
nautical twilight.

If you wish a print-out of the data, click on the PRINT button.
MOONLITE uses the default printer selected for Windows.

A HELP button is provided should you have any question about
any option or parameter in the Spot Detail dialog box.

l Omm,, 0 r-lL-m m o-

hSUN -MOON
ft REM i- -1

88 RIm ANhi. 8 - [RE MbAlf:

Mosmh Nwn WVMao F Ewulag Nw~TM T~ ErniE

The Help Menu

This option is not yet fully implemented and will be further
expounded upon when completed.

55

'7I

APPENDIX B: SOURCE CODE

snTmA.K

I,
#I Copyrigt (c) 1994 Mkchae t. Lese
#I AN ri"t remwed.

dinm Ben.hoPwW . pubic zPane

BW~hwP~le(ZfldW. sizeui;
~6OR -l 1fs.-V

void dMpeycheui;
int drmw(z~uwjEvr);

56

CONSTANT H

CvnesMs nede moncpp aWndaodsiud fur

Nd 1 - cowutwvtj

div "'mril*4 ('Ja. "Fob, a"Mm", "ApW. "mey" "Jun""Ju. "Aug" WSp. "Od", "Nov. "Dee.,0)

div dmy2S(- "01" V0" 0" 0", "Ir -O,"07, "0i", -18, -10' ".

"a21", "22. 23. "24". "25", " ,26" "7, "28". 0);

chw edsya~g ('010. "02, "03.'04, T0" r"6, "07", "O6". "09, "10".

"21-,ai. "22, 23, "24, "25".-"26". "7", "28", "29, 0);

div dmy3O "01 , "0"W'3. "04" "025. "06. "07. "06", "09". "10'.

""11".yg ~"12,"1" "14", "15,"16", "17, "W". "19. 20,
"21", "22", "23" -, "24". "25. 26, "27r. "28.29, "30". 0;

div"dya~D ('1" "2", "03", "04", "05, "06", "07". "08" "09 , "10".

""21"a~l CI, "22. "23, "24."5,"6,", "Ma "28, 29."3,

dim'~ ~ ~ ow airnf - "96"197 , "1968" "19sf, "1990" "1991"i, "1992, "193."19,"95."96'
"1997",21' W "Ma f W.1W. W,2000", "201. "202. "201. "20."03""04,

Igor,~ ~~20."2" "22,923, "24". 0); 001" 2 .a2W* 2 ,"2 ,20"

div miwulmol a OW "00". "01, "02, "03, "04" O05, "06", "0"."0" "Of,

"20, "21". "22, "23" "24", "25. "26. "27", "28, W2,
"30". "31", "32", "33. "34, "35"w. "36""7, "38", "39"
"40", "41". "42, "43, "44,"45", "46", "47". "48", '49",
"50". "51", "52". "53", "w, a 5 w, eaeo, e

5 7
U U55U o59U

0).

div rosokAWCorIul*, "S"."10"., "15", 0);

57

GMT@Ibuefl a ~ p1', "Ir. 0); (0..0'.0' O' r

Usncfldsl~w coMdw

DEFINES.H

constants.5

Constants needed moonlite.cpp and associated files

#ffndef defines h
#define CMPOPUPITEM 101
#deflne defines h

#define TRUE 1
#define FALSE 0

#define MENUMAIN 100
#define IDMENUPOSMON 118
#define ID MENU_FELENEW 101
#define ID MENU_FILEOPEN 102
#define ID MENU_FILESAVE 103
#define ID_MENU_FILESAVEAS 104
#define IDMENU_FILEPRINT 105
#define IDMENUFILEPAGESETUP 106
#define ID_MENU_FILEPRINTERSETUP 107
#define IDMENUFILEEXIT 108
#define ID MENUEDITUNDO 109
#define IDMENUEDITCUT 110
#define IDMENUEDITCOPY I1I
#define IDMENU EDITPASTE 112
#define IDMENULOCSADD 113
#define IDMENULOCSEDIT 114
#define ID_MENULOCS DELETE 115
#define ID MENUCALENDAR 116
#define ID MENUSPOTDATA 117

59

#define ID MCENU DAILYE VENT'S 119
#&efine IIDMENUHELPINDEX 120
#dcfine IDMENUHELPKEYBOARD 121
#define IDMENUHELPCOMMLANDS 122
#define IDMIENUIHELPPROCEDURES 123
#define IDhMENUHELPUSINGHELP 124
#dcfine IDNMENUHELPABOUT 125

#define DIALOG SElTINGS 200
#define IIDSBEGINMONTH 201
#define JIDSBEGMNAY 202
#define IIDSBEGINYEAR 203
#define ED_-S_-BEGINOUR 204
#define IDS-BEGDIMIN 205
#define IDSENDMONTH 206
#define IDSENDDAY 207
#define IDSENDYEAR 208
#definc IDSENDHOUR 209
#define IDSENDM1N 210
#dcfinc IDSLOCATION 211
#define IDSTHRLESHOLD 212
#define IIDSPERIOD 213
#define IDSFAST 214
#define IDSACCURATE 215
#define IDSLOCAL 216
#dcflne IDSGREENWICH 217
#define IIDSPRINTFILE 218

#define DIALOGLOCATIONS 300
#define IDLDESC 301
#define IDLGtvff 302
#definc IDLLATDEG 303
#define IDLLATMIN 304
#definelIDLN 305
#deflrae IDLS 306
#definc IDLLONDEG 307
#define IDLLONMIN 308
#define IDLE 309
#define ID-LW 310
#define IDLDST 311

60

#define LOCATIONDELETE 400
#•dfin IDLDDESC 402
#define IDLD GMT 402
#deflin IDLDLATDEG 403
#dcfine IDLDLATMIN 404
#dcfi ID-_L N 405
#define IDLD-S 406
#define IDLDLONDEG 407
#define IDLDLONMIN 408
#define IDLDE 409
#defimcIDLDW 410
#define IDILDDST 411

#define EDITLOCATION 500
#define IDEDDESC 501
"#-efin II)ED-GMT 502
#defime IDEDLATDEG 503
#define IDED LATMIN 504
#define IDEDN 505
#define IDEDS 506
#define IDEDLONDEG 507
#define IDEDLONMIN 508
#define IDEDE 509
#define IDEDW 510
#define IDEDDST 511

#define SPOTDETAIL 600
#define IDSPOTDESC 601
#define IDSPOTMONTH 602
#define IDSPOTDAY 603
#define IDSPOTYEAR 604
#define IDCGROUPBOX3 605
#define IDCGROUPBOX4 606
#de IDSPOTHOUR 605
#define IDSPOT MIN 606
#define IDSPOTLOCAL 607
#define IDSPOTZULU 608
#define ID SPOT MAZ 609
#define IDSPOTMAL 610

61

`4777 7777 -- " p 7V77. .. .

#define IDSPOT_MPR 611
#define IDSPOT MIL 612
#define IDSPOTSAZ 613
#define ID SPOTSAL 614
#define IDSPOT SIL 615
#define IDSPOTTIL 616
#define IDSPOTPRINT 617

#define EVENTS 700
#define IDEVENTDESC 701
#define IDEVENTMONTH 702
#define IDEVENTDAY 703
#define IDEVENTYEAR 704
#define IDEVENTSUNRISE 705
#define IDEVENTSUNSET 706
#define IDEVENTSUNTIME 707
#define IDEVENTSUNALT 708
#define IDEVENTMOONRISE 709
#define IDEVENTMOONSET 710
#define IDEVENTMOONTIME 711
#define IDEVENTMOONALT 712
#define IDEVENTAMCIV 713
#define IDEVENTAMNAT 714
#define IDEVENTPMCIV 715
#define ID_EVENTPMNAT 716
#define IDEVENTPRINT 717
#define IDCGROUPBOX1 718
#define IDCGROUPBOX2 719
#define IDEVENTDAYLIGHT 720
#define IDEVENTLOCAL 721
#define IDEVENTZULU 722

#define POSITION 800
#define ID_POSDESC 801
#define ID POSMONTH 802
#define ID_POSDAY 803
#define ID_POSYEAR 804
#define IDPOSBHOUR 805
#define IDPOSBMIN 806
#define IDPOSDONE 812

62

#define IDPOSLOCAL 809
#define IDPOS3ZULU 810
#define IIDPOS-RES 811
#define IDPOS DONE 812

#define Position Chart 900
#define P05_CHART LATLON 901
#define POS CHART DATE 902
#define POS CHARTARRAY 903
#define P05 CHARTPRINT 904
#define POS CHARTDONE 905

#define ICON 1 9999

#define DESCLENGTH 30

#cndif /Idefine constant

63

DIALOGS.H

Ufndef dlaogs.h
#defin dlalog.h

Unclude O11.h*
Uncluds *zaphppo

Olnciude *N.h"

dmi C-dig,_Wcailo public zFornDialog
frien dons kocat"IonjM;
kxcaions..Wa *N;
zftfln _bcatlon;
fotjfiW 4nki, bnrnin. _GMT.
kIt _E. _.N DPSTjatdeg. jonde;
bcationatfU dfta;
zDofPushButton Ok..Pmssed;

pub 4Lc:oso~t-fs *zW~ndcw *.zResld&);

bIt doOKO;
char 'locationo { rstum(char ')jocation);
bit findochr I;

clas C-dlg ioc.del : pubki zFormDiaOg

frien das locatlnsJist;

zStrkng Jcatlo;
IMoa atmin, jonmin, _GMT;
kIt _A, _N, _M. _Jatdo.g _onde;
iocation~sbu data
nods *haw;
zDofpushsutton *ok.Pressed;
zComboBox *tb...desc;
zintEdit 'Latdeg, 'Londeg;
znlostudt 'Latmin, *Lonmnin, *UGMT;
zChedd~ox *UDST;
zpadloGm*u 'UEW. IJNS:

,C.dgc...~dlokbCatfsjist*, zWlndow *'zResld&. node*);
cha 'lotloflo { rtum(char ')Jocatln);
lbChanged(zEvwite)

64

clas Cj4Lboc. dit : public zFormDlaift

lIwWdm clssIoationsjat;
locations..At *11;
zftkqn jocailon;
flost _Wkbn. *GMT, .P ;
kit _.E, _.N _WT, jatdeg. jIondeg;
kicabonjitwcl dla;
node 'tawv~;
zDlPushfludof *OILPresmd;
zConiboflox *tb...dec;
zinlEdt *Latdeg, 'Londeg,
zFloeEdit *Labtmi, Lonmln, 'UGMT;
zChsck~ox 'UDST;
zRadloGroup 'UEW. 'UNS;

PubW.
C..dlgjloc_*dlt(ocatlon*jla *, zV~lnow '.zResld&, node');
char 'locatlonO { rgtumn(char')oao;
IbWangd(zEvent)

clas Cý_dlgjipoldaita: public zFormDlalog{

locat-Ionj *11;
zStrlng jlocation, teMpesc;
float jatmin, buiiin, .GMT;
mnt -... " . _W, Waftda, jondeg;
flot ...saz, jil.*.s_, -.maz, _mad, _nI1, ,mpr..jil;
mnt -month, _day, _yer. _hour. jin, jcl
float Io, f, ly, z, h;
Int Id. kn, test
locaton-*tunt dafta;
zDefkuihButtcfi *OkPussed;
zComI)oBoX 'tb...dsc, Ilbmonth, lbfi*I, 'Ibjyear, 'Ibuhour, 'Ib-min;
zFloWtFA -oa, -sal, -sll, *uiaz, -mial, 'Nm, -'pr, Vlii
zRadio~roup 'local;

publia
C..dl9-SPotdatlocatio-*~ ',zResldS1);
I/cha 'locatonO (return(char ')jocation);
Ib~hangW(zEveiit

clas C~dlgEvent: pubic zFom~ifalog(

kwoatlonajt 911;
zftrln _ocation, tenides;
float jabmn.n _Wnnin, _GMT;
sit _.E, _M. _P.ST. jatdeg _Iondeg;
flAt -U st,-ast, sajr, -ms, _mt, _ma, _ac, _pn, _pc, _m, _Al;

65

lV monUM. _day, _year. hr, _Min._km*a;
fWloa o, f, ly. z. h;
mnt id, im, test
ft~o~duct data;
zDag~umhlution 40OkPressed,
zComboflw 'U~dauc. 'lbmonth, 'tb..day, 'lbjarw, 'lbjiour, 'lb..mln;
z~oatEdlt 'ii, Wm. *st. 'ma, 'fly*rn, 'f * mt, *na, 'ac. 'an, 'pc, 'pet, *dl;
zRadWo.rou 'local;

C~dlg.Evaw(Iocaliftw-mt '.zRasld&);
lirct 'locatlon I rtumn(cta 'jctin
Wb~anged(zEvwnt')

clams C..dlgPom: public zFormDlalog

zPush~utton *Done;
zCombo~ox *lbdamc. tLbmonth, 'lbday, 'lbew, 'lb mm.

'lbbour, 'lbbMn, %a~hour, 'lbý_Omln;
zRadloGroup 'locl;
locationmjmit 'U1;
zStrn h j 1ocation, tgmp.desc;
flAte _*atmn, lonmidn, ,.GMT;
mnt _9. A _DST, jaftda jondeg;
float maw- .. al, ..s0. nmm, jual. ju". jpr, ji0;
int mont, _day, _year, bhour, bnn. ahour, j*unin, _"Ia, jam;
float lo, f, ly, z. h. defta;
mnt Id. im, test
zstrin montstr,
zS~trn daymtr.
zStrln yeanrmtr
zTaxtPauu 'p;
zSbrn tamp, tras;
wit count;
locationatmd data;

/Jpent..domczTextPafe)

publivc

C..dlg-PosQcatiflSjW~' zResld&);
mnt do~one(zEvwt ');
Wb~anged(zEvedt e);

I'dam POS..Show: publi PosBase

zPushButtofl 'OkPressed;
zCombo~ox 'array

66

PO6-Shaw(zftMSd);
zCombo~ox *dftwroy;

67

I l. ,I , / ! I- • • ,-o

FAST U..H

P
• tlltlll.h
I

Q

" Input: AI Ilhown lot el•h menll• fun•i•.
tt

• Oulpul: re•s•e v•al:les used tar eme of dala Inmsfer
tt

• CGrlinwU:
I

• MtchNI T. Leller 05 Nov 1993
Q

• Modllkid 21 Feb 1994
o

*I

llfndef fmtJ.h
• flltll.h

cms _Wm hm
{

Ixivm:

double RD. DR, CE, SE./I(4], B[2]. LI, SI. CI. J, Z0. TD. T. AS1. Y;
double E. D, G. LS, SD, DS. V. Q. W. SB, CB. X. O. S. CD. SV, P.
double CS. AZ, HA, U. M, IS1. IL. DT. R, C;
inl K;

pul),€:

void • flollt LO, /&ongilude, degreel, E-+. W'-
S•:. I/Latitude, degrees. N=+. E=-

•nt IM, I/Monlh (01 - 12)
tD, //l•y (01 - 31) usumed correct for cak.•

= HZ,, ,n'm• torero. 0-Zu•,, =kx• (zone)
l/Hour, 24 hr format, zulu or local as above

Smz, I/result, Sun Aztmulh

t1• I•, //mull, Sun I•nl•nce
maz, #rNult, Moon Azimulh

Srest, I/result, Moon Ailitude
mil, I/result. Moon limninln•

I/RmulL Moon Pllrcenlage of Full
I/result. TOtlll llklmimmce

),

68

void event(flot LO. /Urlonltudle degreess E+. Wa-
flot F. IlAjktktue. deogrees. N=+. Ew-
floa IV, //Yewr polo
Ift IM, M~tonth (01 -12)
11W 1D. //Day (01 - 31) assumed corred for calendar
fooat Z, fflme tMoLnt OinZuu. I-local (zone)
floa H, /Ifious from zulu
flost& sr, I/reult. Sun Rise
float& sst, /kesilt Sun Sat Time
flot" 'K fi/rsult, Time Of Sun Merkidin Passage
slod& sa. Ikusult, Alttue of Sun Meridian Passag
flost& mr, I/result, Moon Rise
1006A in. /ksuli, Moon Set
floatS Kt I/reult Time of Moon Meridian Passage
lloatl ama, I/esult, Altitud of Moon Meridian Passage
Gloat& ac, I/result. Mornin CIOi T~lgh
floatS en, I/result, Morning Nautical Twiih
floatS PC, //result, Evening Civi Twiih
float& pn, /kuesult, Evenin Nautical Twiih
float di //rsut, lengt of daylih

enrdlf /Ddleflne fasta.h

69

LL.H

NI
#i N.h

1m heade No for U.cpp. the INked Nat roulirie for sftarn the location data.
I/

Wideln Iji

Ondudoe op.hp
Unoclude *daieb.ho

sw beat lsdonct
f
dim deec(DESCJ..ENGTH 11;
lotm k*lg;

kit NS;
flost iondog;

kit EW.
fotdGMT;
kit DST;

don node

nodeo;
-nodoO;
location~sbuc *daa;
roods eo

r Clas location hndles all aspect of adding, "diVn. saving and
rebmt kin ibfonntion from the location file.

emu locat ion e

z~kt clngdtalils;
node lwad, -sMMW
kit kt~dirty;

It-ocatlomNwjt;
ktdcear;
kit sy
kIt saeaP~ld w pn);

70

hit opWiO; zVmm*pi)

ki eWdIW~sOgqWMxlow Vuln, locioatist o)
kit add~d~sogozV*Wow *pwki. Iocabw*IWnjn
hit &dTOdO(oOosftIn sbWI *).
kit dokft dluogqoMndow 'pwin. Ioiniosb lIste
rode* SvndzSftrl ft
kit PeekJ.@LdkVIO (retur NsLdlr*;
void Meeetjolntsro "uWpe - head:);
dw pa~neto;

71

LOCDATA.H

ft Iocdat.h

Sffndst Icdsft.h
Odgin Iocdsts.h

kmacatonuruc locdstmi

MCA: WCAS Tustin, 33,42.2, 1, 117,49.8. 1.8,. 1. 1),
rc:NAs Nom isimnd, 32,41-9. 1,117,.12.6. 1. 8, 1. 1),

{CAC HAS Mlranor , 32,52.11,1.117, 08.5. 1,5., 1, 1),

endlf l~doin Iocdatm.h

72

MEMUFRAM.H

I/

Noids menuhm.h
fd.rnw menuham.h

Unalude -app.1i

dm MwwFs:u kzra~me
zTxldan tp;

MenFfanmsKzVmWln pasnt~zSzer WzDWORD w~tiStyW,orist char* MWl);
ranwmmo;

vkWWa kht convnand(zCmmanwdEvt)
bIt doExt(zCanimnwxEvt eI;
bit Mddlocaton(zcoqmmandEvt)
do~OO;

Sandif /hnenuftu

73

ROUTINES.H

ft routin.h

fndef routinsh
Sdsfln mu~wlksh

lnciude 1.h"

usroutie~clonmtI~)

int .oWat@O;
int pouitionO;

#endif /koilnesýh

74

BMPSHOW.CPP

II Copyrigh (c) 1092, 1993 Ivnmek Doveopowit Corp.
N AN rih" meowed.

Undude pp.hppw
#incude bnipehow.h-

I ~OWaNe::BaWShowpsne(zVMndow *w. zSizr *s):zPano(w.*){

bnipdlsp 0-0
euOpmn a FALSE;

A-iBNpFhwýýens:W:-OmpShiovPaneO{
if (bmpdisp) delete bnidimp;

void BmpShowPeng::iapchw enwm)
Nt (mpdisp) =eu~ bmpdlsp
bmip a now z~le~mvs. nuns);
bmpdlsp - new zflltinpDluplm(bmp);
fieOpen - TRUE;
canveO->Beintyo;

kit Bphopn::drow(zDnrsEvr)
If(fliOpen) (

zDknmielon dm = bnip-ulzgQ;

bmpdisp.-coTo(canvasOOO,dm.wkdth,dm.heightO.oO0);

rtum 1;

75

DIALOGS .CPP

IIdialogs.cpp

Iiroutines for diatogs.cpp

Sinclude <string.h>
oinclude 'crnath.h>
#include <stdlib.h>
Sinclude *constent.h"
Oinclude "dialogs-h"
#finclude IV~h
finclude *fustasWh

C dlg~kcatons::CigjlocationslSocaUiofsjist *811, zWrndow *wzResld& rid)
zFoffnDialog(w~rid){

Iocation;
GqMT r- 0.0;
Iatdeg = 0;

jatmn = 0.0;
_E = IDJ.W;
jondeg = 0;
-onmin = 0.0;
...NID _L_N;
-.DST = 1;

Ok-Pressed anew zDefPushButton(this, lOOK);
Ck~press~id->setNo'tfyClicked(this, (ClicicProc)&C...ilgjocatiofls::doOK);

new zStringEdlt(this. ID.LDESC, &Jocation. "1(30r);
new zlntEdit(this, ID_LLATDEG, & latdeg, O00, FLD_.NOTREQUIRED);
new zFkoatEdit(this. ID_.LLJATMIN , &Jatmin, "00.00r, FLDNOTREOUIRED);
new zintEdit(this, IDJJ.ONDEG, &JIondeg, "000r, FLDANOTREQUIRED);
new zFloaEdit(this, DljLONMIN, &Jonmin, "00.00". FLD._NOTREQUIRED);
new zCheckcBox(this.Ilj_..DST, &LDS1);
new zRadioGro4Jp(this, IDLE, IDLýW. &_E);
now zRadioGroup(lhis, IDJý_N, IDLL6S, &.N);
new zFloatEdft~this, IDJý_GMT , &GMT, "0.0". FLDyNOTREQUIRED);

showo;
moxdalO;

int C...dlgIons: :doOKO

If(IzForrnDiSIog::storeDatao)

zMessage mness(app-:-,rootW~ndowo,wA Desciption is Required","",MB....OK);

76

setocusO;

else If (Llatdeg -c 0) 11 Llatdeg > 90))

zMessge mess(app->'rootVWAndowo,"Degrees Latitude must be between 0 & 90"~mMB-OK);
setFocusO;

else if (LIondeg < 0) 11 Ujondeg > 179))

zMessage mess(app->rootWindow0,"Degrees Longitude must be between 0 &
1 79",""MB..OK);

swtocuso;

eohe if (Liatmin -c 0) 11 Llatmnin > 59) 11 Llonmin < 0) 11 Llonmnin > 59))

zMessage mess(app->'rootW~indowO,0Minutes of Latitude/Longitude must be between 0 &
50r,.MBý_OK);

setFocuso;

else if (LGMT < 0.0) 11 LGMT > 12.0)

zMessage mess(app->roofM~ndowO,*GMT Offset must be between 0 and 12*"",MB-OK);
setFocuso;

else If QlI-:-flndLlocation))

zMessage mess(app-.'rootfMndowO."This Location is already defined NnPlease select another
name",

"Duplicate Namel",MB.. OK);
setFocuso;

else

shutdowno;
retum(1),

C...dc...qdel::C...dlgjoc...del(locationsJist *all, zMlndow %vwzReuld& rid, node *temnp): zFormDialog(w~rid)

location - " [Choose Location To Deleter;
_...MT = 0.0;
jatdeag =0;

jatinin U0.0;

_E ID..CLW,
_kxdeg 0;
Jlonmin *0.0;

-..DST -0;

Latdeg - new zlntEdit(this, ID~j._LCLATEG, &.atdeg);

77

Latminin new zFloatEdit(this, tPj.D LATMIN , &jatmnin, -A.#W, FLDJJOTREQUIRED);
Londeg - now zlntEdit(this, 1ID LD _LONDEG, &,_ondeg);
Lomnmin = new z~loatlEdlt(this, lDJ.DJ._ONMIN, & lonmin, "I.U#, FLQ.NOTREQUIRED);
UDST = new zCheckliloxfthasID _LO ýDST, &.DST);
UIEW =new zRadloGroup(this, IDJLDE, IDJ..D.W, k.E);,
UNS =new zRadioGroup(this, lQDL0.N, IDLD S. kN);
UGMT =now zFloatEdit(this,ID LO (3MT, &_GMT, 00.0'. FLOJJOTREQUIRED);
lbdesc =now zComboBox(this,IQLD DESC, &joctior);
while (temp ! NULL)

lb _dose add(temp->'data->"desc);
temp = temnp->'next;

Ib:Ldesc->addC* (Choose Location To Delete]");
Ibdesc->sotToDefauftO;
lbdesc->sotNotifySelChange~tis, (NotffyProc)&C...dlajlocdel::lbChanged);

showo;
modhlo;

int C...dlgjioc~del::lbChanged(zEvent "ce)

9 1 have no idea why I have to reset the zString in this Place
fl but if I don't, it truncates the value to 15 after the
HI first iteration.

jocation =" ;
IlbLdesc->'getEditText~Location);
node *desired = Hl->findLkocaton);
if (desired)

latmnin = desired->'data--*alatmin;
jatdeg = desired->data->latdeg;

lonmin - desired->data-$--onmin;
jondeg = desired->data-'blondeg;
-GMVT = deuired-'data--*GMT;
-PST = desired-'-data-:1DST;
JE a desired->data->'EW + 409;
-N a deuired->daWa-NS + 405;
Latdeg-'s~tToDefaultO;
Londeg-"setToDeftultO;
UDST->setToDeftuftO;
UGMT->setToDefaultO;
UEW->setToDefaultO;
UNS->setToDebfauto;
Lonamin->'setToDefauftO;
Latrnin->setToDeftultO;

C..dhLocedit::C..dlg~loc_..eit(locationa~list *all, zWindow *wAResld& rid, node *temp):
zFormDimlog(w~rid){

0 1=all;

78

-location (Choose Location To Editr;
GMT a 0.0;
Iaotde 0;

jatinin u0.0;

-Ea IDED.W;
jondjeg .0;.
jomnin - 0.0;

A 0 DN
DST -ý0;

Luedeg a new zlntEdit(this, lD EDJLATDEG, kjatde);
Latjujgn a new zFkoatEdlt(Vth. IDED LATMIN , & latmnin, "WOW, FLDNOTREQUIRED);.
Londeg a now zintEdi~t.tis lD...EDJ.ONDEG, &jondeg);
Lonuin - new zFbllaEdit(thls, ID_.ED..LONMIN, &jonmin, "U#.W. FLD..NOTREQUIRED);
UDST = new zCheclflox(thIs,ID.ED..DST, &..DST);
UEW - new zRadloGroup(thisa, IDED*. ID..EDW. &.E).
UNS a new zRadloGiroup(thls, ID.EDJN. ID..EDS, &JJ);
UGMT - new zFloatEdit(`thls,ID.ED..GMT, k.GMT. 001r, FLD.NOTREQUIRED);
Ib~desc new zComboBox(#thi,ID_EDDESC klocation);
while (temnp I- NULL)

lbdesc->&dd~teq-~dats-*desq);
temp = ternpo-*next;

IbL-desc-'add(' [Choose Location To Edft);
lbdesc.-'aeTdOefauffO;
Ib~dew-sctNodfySelChange(`this. (NotlfyPrc&CQfdlgjlo..edit::bChanged),

modhlO;

hit CdI loc~edlt:IbChanged(zEvent 'ce)

HIl have no idea why I have to reset the z~tring in this place
ft/but if I don't, it truncates the value to 15 after the
ii first Iteration.

_location m aa
l0des->gelEdltTextLocation);
node 'desired - fl-$indtjocation);
if (desired)

laM*Yn a desired-data-$atmln;
_Mtdeg S wudesr6:date~a itde;
jonmhi a dehlmed--daaonrnin;
_kondeg a dleslred-"dta$ode;
-GMT a de*Ired->data-->GMT;
-P.ST a deslred->dats->'DST;

_g deu~red-Nd&I*->EW + 509;,
N a deuired-'data-INS + 505;

Latdeg.:,setToDefau*O;
Londeg-2sm(ToDefauftO;
UDST->'seToDefatftO

79

UJEW-~se(ToDefuLdto;
UNS-:aetTo~efaltO;
Lonrnilr-ýsto~efaufto;
Latniln-ý,setToO~eaulO;

C~dlýspotdata::C dlgsppotdata(locaftionsst *a#, zResld& rid)
:zFormO~kfo(app--,rooWlndowo rid)

0 a all;
_location I, Choose Location r;
.GMTr a 0.0;
WAftd. 0;

jatmln 0.0;

jondeg 30;
jonmin 0.0;

_DST = 0;
local a ID)ýSPOTj.LOCL;
daty - 0;

san a new zFloeEdl~t~tl, 1PSPOT _SA, &saz. U#W FULNOTREQUIRED);
sal = new zFloatlEdlt(thls, ID.SPOT..SAL, k.sal. "4<#jSW FULNOTREQUIREO);
sail - new zFlovtEdlt(thi, ID.SPOT..SIll, &..il, "OM.W, FLD .NOTREQUIRED);
maz =new zFloatEdlt(fths. ID.SPOTAAZ , &jý_naz. WJW, FLD- NOTREOUlRED);
mel * new zFloaEdlt(fth, IDLSPOT-MAL, &-mal, -4.SW, FLDONOTREQUIRED);
nil a new z~loatEdit(this. llD SPOT MIL, &jtul, .W FLDJJOTREQUIRED);
mnpr a new zeloatEdlt(this, QDSPOTýMPIR. &jnpr, NW, FLD...NOTREQUIRED);
til - new zFloatEdit~ths, ID..SPOrjIL , &jil, .,M FLDLNOTREQUIRED);

lb~desc = new zComboBox(this, ID SPOT DESC, &joaktion);
Hl->reset...po~nterO;
teindes = ll-'lemnxtO;
while (te~mds I- "I

lbdesc--add(teip..des);

Ib..desc-21add(IChoose Location n);
lbdss&-*-WeToDvFault0;
lbdeec--'ss&al~ehange(U f1, (N~Prc&Cdlg~spotdt::lbChanged);

lb mnthM a new zComboBox(fth, ID SPOTMONTH. Sjnonth);
lkbrnonth--,addChar~trkWsmonfth);
lb..month->setTo~efaultO;

~ur~~CI..,~thl, (o yroc)&C..dlg~spotdata::lbChanged;

N:day - new zCombo~oxM0hls IDL-SPOT-DAY. &...day);
lbady6ddCharStrlngsdays3l);
Ii..dwy->seToDefauft0
lb..dy--:,etdodlfySeIChange01I, (NotlfyProc)&C...dNLspotdata::lbChanged);

80

Ib_"WU~ now zConlbftKthi. 10..SPOTYEAR, &_yea*);
lb..ysar-3sddChwStrins~vemr);

Jb-Yfer-'stý ýfSOChWeng(WGi, (NoW yProc)&C...dlg..spoatdat::IbChwngd);

Ibjiour a now ZCwnbo~ox(Viis. IDLSPOTyOUR. k.hmou;

Ib~hour-2,etToOefbultO;
b..hour-3.losýfSel~wnge(Vifs, (NoifyProc)&C~dlLspotdata::lbChanged);

Ibmin m rw zConibo~ox(dtJs IDýSPOT _MIN. &..min);
Imbjnln-addCharStriWkmlntes);

bjnn-'ss~otfy~l~ang~ths.(NobtyProc)&C...dlg~spotdata::1bChanged);

local - new ZRadiOGMouW"is IDSPOT-LOCAL, ID..SPOTJULU, &jocal;
WlOca-st* tiyýcedlh (No fPoc)&CdLgspotdata::IbChanged);

shwow;
modalo;

Int C~dlg~spotdsta::lbChanged(zEvent 'ce)

_nomth al.m thsleloO+ 1;
_day a lbdmy-:os~edetoO;
_yewr = lyear--:eiscýon + 19B3;
_howr z tLhour4%Wedsclono;

switch Lmonth)

cuse 3:
cuss5:
cuss 7:
case 6:
cus 10:
cms 12:

lb~day14,*ddChsrSdag5(day531);
th~duy->beToDekfauto;

case 4:

cms 9:
cum 11:

bL~dsy-nseCoDedwMt;

81

case 2:

Nf (Juost~yee /4) - (yesa /4.0) &
fiostye& /400)

In Lyesr1400.0))

lb~dsy->addChwSkkVg(dsys29);

oels

Ibkdey->addCharSbkVgsdsWs8);

Ib-doy-:-setToD@W*iO;

Nf (cawlstsdo)

_Ooation.U
lbdos.c-pgtEc~tText~jocston);
node *deshwd aU~i~cto
Nf (desired)

jahdeg a deslred-v'date-vistdeg.
_jonnil w desired-v'duta-,'lný;
_jondog a desired-NdrAs-:mondeg;
_W~r - deslmd-dat-ýGMT;
-PST a desWud->'daa-2-DST:

- deusrod-x'da-EW,
TN -deslred->dsta-*NS;

lo alondeg + jonniln /60.0;
If LE) lo *=-1.0;
f w _aldeg +e jtMiin / 60;
if LN) f * -1.0;
if (.jcal - 607) z - TRUE;
else z = FALSE;
fasLst.alotM *aig a new fastkalgorthm;
h aJlour100 + -min;

saz-:setTooefaulO;
uWkvfoDebuk;

mu-msatToosb*O;
mmsat-, oDeftft;

nl-z-ýo~eftuko;

82

C...diCLEvent:Cdg.EventOOWohun.s *all. zRseld& r4d
:,zFo 0 *pp-roueAindowO rid

* a ml

_1ocatlon - Choose Location r;
-(T a 00

21tde *0;
jsmbiln 30.0;

jWOndg 0;
jonmnin *0.0;

Na ID.LD...N;
.DT .0;
-local aID _EVENT _LOCAL;
_.day aO0;

ar new ZFWoatdlt(h. ID)ýEVENT _SUNRISE. &_W.s, "0000)". FLD...NOTREOUIRED);
sta new zFlostEdkt"hl, IDLEVENT.SUNSET, &_ss.t. "0000, FLOLNOTREQUIRED);

st anew zFlovtEdK~thi, IDLEVENTSUNTIME, &_st. 0000"r. FLD)J1OTREOUIRED);
so now zFlostEdlft.tl IQEVENT _SUNALT. ksa. "-9N, FLOLNOTREQUIRED);

r a f zFlostEdit(tthis. ID EVENT JMOONRISE, &jnr, WW.cr FLQNOTREQUIRED);
rme a new zFloatEdoft~t, ID EVENT MOONSET, &..ms, T000' FLD..NOTREQUIRED);
mld =new zFlostEdlt(I", ID EVENT -MOONTIME, &nt. -00Wr FLDJJOTREQUIRED);

"m now zFloetadlt(tlbs. IDLEVENT JMOONALT. &me,40-W' FLONOTREQUIRED);
8c 0 new zFloetEdlt(dth. ID EVENT AMCIV. k.c. W000' FLD.NOTREQUIRED);

an flew zFloalEcliot~t, IDLEVENTAMNAT, k.an, "00W,' FLDL.NOTREOUIRED);
pc a new zFloatEdlt(this. ID...EVENTyMCIV, &x.pc "0000", FLDLNOTREQUIRED);
Pn = new zFloetEdit(thIs, IDLEVENTyMNAT, &pn, W00C, FLD...NOTREQUIRED);
di. n ew zFkloaEdlt~hls. ID.ýEVENTDAYUGHT, S.dI. 0000"r. FLDNOTREQUIRED);

bdes0c unew zComboBox(thls ID..EVENTDESC. &Ljocai);

tenimdesc a llget.nexto;
while (teMp desc an

teMpdesc a UI.getnuWt;

hb~desc--.dd(I Choose Location J");

hb~desc-'-eýtiye ýhnettft. (NotlyProc)&CdlgEventlbChanged)

abmot nerw zCombo~mox*. ll)_IEVENT JMONTH. &nofth);

bjnmonre-e'aToDefaiito;
lbjnonth-"'setotdkSeWChsrWe~dft (No oc&C.dLgEvent:bhanged),

bL~day = new zCombo~ox(thl. IDL.EVENT..DAY, kdmy);
abdy-;,ddChsrStrlngsdsys3l);

83

bds.NOIYS.~haQ.(NS.(Na yProc &Cj11.-Evw*:bChwflW);

Ib~yesarwuw zConiboBox(this, ID..EVENTYEAR. &_ear;

lbjqws9Oýýth (N~~c&CjdEveft~bChwflVd;

kloca - new zRadloGroup(this. IDEVENTJ.LOCAL, IDEVENT...ZULU. &jocal);
local-'sýtotfýced(thi. (Noqjfy)&C..dlgfivwfl:IbChaflind;

shoWO;
mod@lO;

hit CL~EYwnt:b~Wtg~d(zEwflt *ce)

day *b.~-s~cifO

_yewr ubjear-3'eeioflO + 1993;
swich Lmonth)

case 3:

case 5:
case 7:
case 8:
cuss 10:
case 12:

Ib.dney-'rssetO;
btday-,%addCharStringdays3l);
Ib~day-:bWToODfaultO;

case 4.
cuse 6:
cuss 9:
cuse 11:

Ibjs~y-mreeO;
it~dny;.,mddchurstrlfl(dUYU0);
ib~dy-:setTo~sfaultO;

case 2:

Ib~dsy4ioas6O;
if (&md-yea 14) - .yeu 14.0) &&LYW/w

I- Lyeur / 400.0))

84

lbdm--,-ddCha'Strngs(duys26);

ff (ampleteO)

location
b..d*Go-:gsEdltTextLbocmion);
nod.l *dosul a U-$Indkloclon):

limin a sid-dt-'un,
jedemg a doskred--*ainýrat;g
jo~rin -deskd-naa ofrnin;

_DST desksdatm --DST,
_E udesire din*ýta-

N udesWed.-rdtaýNS;

lo _jondeg + Onmin i W.0;
If CE) lo '- -1.0;
f = jatdag + _ftmin 1 60;
If LN) f ** -1.0;
Nf LIOWI - 721) z a TRUE;
edse z a FALSE;
fast algrithm *ahg = new f*ast..lgothm;
alg.N'eveno, f. _.yom*1 966 _Month+1. _day+l. z. h. upr, _s..st t a r ,_ta

or-m'stTo~efaulO;

ut-ýstoDefatO;

sa->WeToOefatIo;
inw->'teffoDefaudtO;

mt-NsetooefultO;
n*-mwtToDefauftO;
av--oDebuIto;
euetsTooebu*O;

wwfWau oul*;
peoeWoaat ft;

C..dlgPos::C..dlgPoa(locatlonsjt *M, z~eatd rid)
OormOlsoq(app-ý'o ýNdw.r"d

85

ja to n-' (Choose Locution r;

jetdeg0.0;

ja&Wn = 0.0;,

jaondeg 0;
jonmnin *0.0;

_N ID-ILDN;
-..DST a 0;
jk*acalQID.POS LOCAL;
_day a30;

oes m 2;
h m0&

Dome - new zPush~utanthis. IOPOSDONE);
Done--se, atfýClcked(this. (CkikProq)&CdftPas::dooone);

Ibk.desc - new zCombo~ox~ths, IQPOSDESC. &jocation);
N->re9@LpninerO;

while (temp deec Im)

Ib...dsc->&dd(tenipdec);
t*Mp..deecc W I-getjwexto.

IbLdesc->mmddr [chaose Location n);
ftj..es&-'setToDefutO;
kb-.dftc->set~otfSelChange(this, (NotifyProc)&CdlgPos::hbCharged);

Ibjnonth a new zCombo~ox(Othis IDL P08 MONTh, & month);
IbjnxNth->addCharSbfns(monft).
Itjnonth->ss(To~efauitO;
It..month-DsVt~otlfySetChsrKWefth. (NotlfyProc)&CdlgPos::IbChenged);

kIbday new zCwmboflox(thIs. ID!POSDAY, &..day);
Ib~day6-,addChsrStrtngsdays3I);
lb..duy-';,ss(To~eftuftO;
Ib~dmy-'set~otlySeIChang(fthis NoyProc)&C...dlgyos::IbChangad);

N)Lyea = raw zComboBox(this, IDLPOS...YEAR, &_.year);
Ib...yer->&ddCharStrlns(year);
lbyear-seffo~efaultO;
lbjaert-oifsWeIChangefthl, (NoWfrocw&C...dhoyos::Ib~hangd),

lb~bhour a new zComboA~ax(this, lQPOS BHOUR, &bhour);,
Ib~bour-.*eddChsr~ftk~ns(haurs);
b..bhour->setTaoelatdtO;

Ibbmni = now xCombaflae(Vthl, ID POS.JBMIN, &bmin);.
Ib..bmin-~addCharSb*Vns(mnutess);
b bmin-'-seo~efaultO;

86

Ibjses a new zComboBox(this, ID.POSRES, kres);
Ibjpes--*uddChsrStrngs(resokuton);
lbsn-z-sTooefwkjo;

lmce u new ZRudlo~oupthis IQPOS-LOCAL, IDýPOSZULU, kjoca);
losl-ýst ýtyIck~ed(this. (No~tyProc)&C..dlgPos::Ibhangsd);

Wi Qý_dkLPos::lbChungsd(zEvmnt *cs)

_nont a lb~nwdh..U +ue..O 1;
_day - lbjuy-,,slsion;
_yew - lb..ysur-'sslsct o + 1993;
switch Lmonlh)

cum 1:
cses 3:
cues 5:
cuses 7:
cuss 8:
cuse 10:
cum 12:

lb~dsy--*ddCharSftWl~(das31);
h...dy-;,sstTo~sfult;
break;

cuss 4:
cuss 6:

cuses 11:

lb..day-aneset0;
M~duy->addCharStrlngs(dsys;W);
tLbfay-'se(To~sfoultO;
break,

cuss 2:

Ibduy-nr~eto;
Nf (IoatLyser / 4) -u Lysar 14.0) &&

fOW(_year 1400)
I- (jearI400.0))

Ibý_day--%sddCharSWrng(duys29);

lbflay---*ddChsrStrlrgs(duys8);

87

Ib~dmy-2-s@(To~efaultO;

int CdLPos::do~one(zEvefl *ce)

Nf (comrpletedO)

f~st~aldthm atg z new fas.aplgorth;
loocation

lbdesc-:-gelEdltTextLbocaton);
nods *desire - ll-ýL4docationf);
switch ojs-ýoselsctlono)

case 0:

deftai

I

delta 5
break;

case 2:

defta a 10;
break;

case 3:

defta = 15;
break;

If(desired)

_atniJn m dosired-*dtaý'atn;l
jtdeg a desired-'Ndato-Niatdeg;
_onmin *deslred-:'at-ý Wurnin;
jondeg desi-edat-'lole;
_GMT *dessred-'dtaý'MT
...DsT adoserd->data->DST;

desired-niaalm--~Ef
*J adessked->'data-:--S;

10a * jondg +I jonmin /60.0;
if LE) lo * -1.0;
f =atdeg + 8amn 0;

88

Nf CN) f *-1.0;
if (_local) z a TRUE;
elsez = FALSE;

/htn...data*b lo *B;

Ib...month-:ogetEditText(monthst);
Ibday-'-vgetdfText(dayst);

Ibyer->getEdfText(yearWt);
strcpy(dtýdata-array[0j.- S UN & MOO 0N PO0S ITIO0N C HA R T
rtnOast&a-'vrry[j - std temp);
temp = NULL;
aretrcaemp, _Iocatlon);
strcat(t~mp,LN ? . N, S w));
Itoatjatdsg, trash, 10);

govtiat~lmi, btash);
sbafteglp, tash);
gitoetjodnd, tr ash,1);
Wstr(WMp, trah);
strcat(teMp,LE?"
gcvtiondln, btash,1);

strcatotemp, tras);
strcal(flndtawrash); emp)

temp amonthstr,
atrcatotemp . u),

strcatotemp. dayst);

strcat(temnp, Zulu +
gcvtLGMT. 5, trash);
sbcoeMp, trash);
scpy(rtn-data-ý1array[2)temp);
sbMM~dta-y[afeAI" Sun Sun Lux Moon Moon %Moon Lux*);

sndtrdla--,anvy[7,1ime Azimuth Altitude Ilium Azimuth Altitude (Phase) Ilium");
strpy data.:-wara M8.*-- ".
M&lgi for producing times

for (count a0; count oc=60; count++, bmnin 4.= delta)

if Lbmldn oa60)

...bmln -=60;
-bhour++;

h - bhour * 100 + bmin;
ag4-:'illum(lo, f. _year+1993, month+1, ...day+1, z, h__-saz__-sal, -uil, _rnaz, mraI, _0I, jnpr,

-to);
Nf (h :- 2400) h -= 2400;
sprlntftenp, -%04.Of %8.Of %9.Of %13.5f %8.Of %9.0f %9.0f %12.5f-, h, sW, ...sal, _siI,

-maz, _Mal. -mpr. _IB);.

89

strcy(rtr~dat.-owray~count.8].t@Mp);

shuldowno;
reur 1;

/*POSCHARTDLG::POSCHARTDLG(zResId& rid): zFormDlaNo(spp->rootWlndowO,rid)

dluplay...rray = new zComboA~ox(thls, POSCHART ARRAY);
for (int count -0; count a 80; count++)

dlsplay-wuray-addw(arrayfcountl[OD;

90

FASTAL.CPP

P ý ý --ý se -- he -6-0 ,160 -Oas s* -- ---- se -- --- --- --- ---
P File Name: fasta.cpp
P Programmer Micha" T. Leste
r* Creaded: 05 Nov 1993 Modified: 21 Feb 1994
r Description: nImplementaton of algrithms from Chirclr 171
P Compler: Borln C++ (DOS IDE)

--re e e 0 8 Q0 - - - - ---- -

Sndude 4meUh.h:,
Sinclude ¶asta.h"

Wolhn wagn(arg) (erg-c0? (-1) : (1))
Odelew deg~arg) (lloor(arg) + ((erg - floor(erg))1 0)18)
Odalli dnis(arg) (floor(arg) + 6 (erg - floor(arg))/10)

Odeflnw negfl (-W/B
Odefln TRUE 1
dellne FALSE 0

void
1asAelgodthm::ilum(

float 10, //mLongtue, degrees, E-+, Wi-
float F. ILatAtude, degrees, N=+, Em-
float IV. /Newr()W
int IM. I/onth (01 -12)
ktit ID, I/Dy (01 -3`1) assumed confed for caledar
float Z. fRlme format 0-Zulu, I =Iocal (zone)
float H. I/our, 24 hr format, zulu or local as above
ftoat& saz. /hksut, Sun Akmuth
float& saW. I/result Sun Altitude
'11at% siA I/rslm" Sun Il~umknane
flat muz, Ikesuk Moon Azw
float& mel. I/resu Moon Altitude
floet& mil. IhKesu Moon Il~umhnace
float& mpr, I/eslt Moon Percentaep of Full
float& Ill /hakes, Total Illuminance

RD 57.29578;
DR =IIRD;
CE a 0.91775;
SE a 0.39715;
A(01 n -0.01454;
All] a -0.010483;
AM2 a -0.020791;
AP3J a 0.00233;

F - F *DR;
C .360;
LU a fabe(LO);
SI 0 sqn(F;

91

Cl - coo(F);
J - 367 * IY - loor(7 (IY + floor((IM + 9) 112)) 4) +

ftoxr(275

IM/ 9) + ID - 730531;
DT a 0;

If (Z -, 0) DT u -LO I C;
If (Z -, 1) DT a -(U - 15 floor((LI + 7.5) /15))! C 'sgn(LO);

ZO u J -0.5;
E u(deg(H 100.0)) 124- DT- LO / 360;
D -ZO+E;
TD - 280.46 +0.98565" D;
T a TD -Ooor(TD /36) *"30;

if (T< 1-500) T aT + 360

TO -3'7.5 +0.986W D;
G u(TD - for(D /1360) * 360) DR;
LS u (T + 1.91 u in(G)) DR;
ASI - atwn(CE *tan(S)) * RD;
Y , cos(LS);

If (Y < le-500) ASI a ASI + 180;

SO - SE * sk(LS);
DS = .skt(SD);
T =T-I15;
T =T+360*E + LO;

for (hnt N - 1; N <3; N++){

if (N-- 2X
TM 218.32 + 13.1764 * D;
V TD -floor(T 1360) * 360;

If(V< e-500) V - V + 360;

TO 134.96 + 13.06499 D;
Y (D - floor(TD 130) 360) DR;
TM 93.27+ 13-22935* D;
0 (TDO- f•or(M / 3S) * 30) DR;
TM =235.7 + 24.3815 D;
W u(TD - floor(13W) * 360) DR;
SB sin(Y);
CB ucos(Y);
X =uOn(O);
S = cos(O);
SO -sin(W);
CD = co(W);
V V + (629 - 1.27 * CD +0.43 CB) * SB+ (.66 +1.27 CB)

O8 0.19 * Wn(G) -0.23* X * S;
V sV*DR;

92

Y ,((5.13 -0.17 CD) X + (.56 SS +0.17 SD) S) DR;
SV a in(V);
SoB "un(Y);
CI mcoo(Y);
a a CBe* O(V)
P =CE"SV*CB-SE 0*--
SD =SE*SV*CB+CE
Al. atan-(P / 0) *RD;

if (Q 0) ASI aASI + 180;

DS aSn(SD);
)

H =T-ASI;
CD a cos(DS);
CS = coG(H * DR);
Q -SD"CI-CD*SI*CS;
P - -CD sin(H DR);
AZ = atn(P /Q) * RD;

if(Q0 l-500) AZ = AZ + 180;
if (AZ < l*-500) AZ a AZ + 360;

AZ floor(AZ +0.5);
H =a5n(SD S + CD*CI *CS) RD;
Z -H*DR;
H - H -0.95 (N - 1) *cos(H *DR);
HAm H;

If (H :- (-5• 6))
HA - H + 1 / (tan((H + 8.59 / (H + 4.42)) DR)) /60;

)

U -sin(HA*DR);
X a 753.6616;
S a n(X * Xos(HA * DR) / (X + 1))%
M - X • (coS()- U) + cos(S);
M ,, p(-.21* M)* U +0.0289 * p(-.042 M)

(1 +(HA + 90) * U T57.29578);
HA - (M(fabs(HA) +0.5)) * sgn(HA));

If(NI 1){
181 a 133775 * M;

n a AZ;
sai- HA;
u=I-1;

E ac•(co(v- LS)- C1);

93

P - 0.892 * exp(-3.343 / (pow(ton(E / 2), 0.632))) + 0.0344

(sln(E) - E * cos(E));
P a 0.418 * P / (1-0.005 * cos(E) -0.03 sin(Z));
IL -P*M;
IS1 - IS1 + IL +0.0005;

mmz AZ;
min * HA;

IL floor(50 * (1 - cos) +0.5);"Wix w t.;tv - MR + am;

void
r xfu thm::event(o Lo. /ilongitude, degrees, E=+, VW=.

flo F. /Latitude, degrees. N+, S-
float Iy, wIYear ("m)
int IM, I/Month (01 - 12)
int ID, /iDay (01 - 31) assumed cored for calendar
float Z. //rime formN 0-Zul,. I-ocal (zone)
float H, //hour from ztu
float& ur, /autk Sun Rise
1loat& st //resut Sun Set Time
float& K, //result" Time of Sun Meridian Passage
float& a, //result Altitude of Sun Meridian Passage
float& mn, /result, Moon Ris
float& mrs, /result, Moon Set
float& nt. //result Tkie of Moon Meridian Psage
float& me, //el Altitude of Moon Meridian Passg
ot& //result Morning CWil Twilight

float& an, I/resut Moring Nautical T ght
flo& pC l /relt Evenig Civi Twi
float& pn, //result Evening Nautial Twilight
float& di //mult, nth of dalght
)

RD - 5729578;
OR -IRD;
CE a 0.91775;
SE - 0.39715;
AN - 0.01454;
Al1] a -0.10453;
AP2] -020791;
AM3] - 0.00233;
int ed..now - FALSE, elt._n loop - FALSE;

F =F*DR;
C - 360;
U a fas(LO);

94

J 367 IY- -floor(Y + Mioox((IM + 9) 112)) 14) +
floor(275

IM 19) + ID- 730531;
DT a 0;

if (Z) DT - -LO/ IC;
If (Z - 1) OT a -(U - 15 *tloor((U + 7.5) 15)) I C agn(LO);
ZO " J -0.5;
"for~nt L" 1; L <=4; L++{X

if (L - 4) C a 347.81;
If ((L-- 1) fl (L- 4)){

M =0.5 +DT;
K-l;

whft(1)(
udwnow a FALSE;
M - DT;
E=M-LO/3W0,
0-ZD+E;
if(fab(E) " 1) E- sgn(E);
TD a 260.46+ .9685 * D;
T - TD - floor(TD 1360) 360;
iU(T <0)T +-360;
TD a 357.5+ .956 * D;
G - (TD - floor(TD / 36) •380) * DR;
LS - (" + 1.91 * *K(G)) * OR;
ASl - ain(CE * tan(LS)) * RD;
Y a co(o.");
f (Y < 0) AS1 +-160;
SD a SE *"(lS);
OS a a.n(SD);
T- 180;
If(L-4)

TD a 218.32 + 13.1764 D;
V a TD - fioor(TD 1360) '360;
if(V< O) V- V+ 360;
TO 134.96 + 13.0649 * D;
Y a (TO - fior(T /30) 360) * OR;
TO - 93.27 + 1322935 " D;
0 a (TD -for(TD 3I0) * 3o) * DR;
TM 235.7 + 24.3815 * D;
W - (TD - Ioor(TD /360) * 360) ' DR;
CS - @0n(Y);Ce 0 co"(Y;

X a u(O);
S a @o6(O);
SD a s-n(W)

V + (6.29 - 1.27 CD + .43 CB) SB +(.608 1.27 CB)"

SD -. 19 *in(G) -. 23 *X * S;
V', OR;

95

Y m((5-13 -. 17 *CD) *X +(.56 S8.+.17 SD) S) DR;
SV asin(V);
SB w shn(Y
CB - cos(Y;
a a Ce * cos(V)
P=uCE' SV' CS -SE SB;
SD=uSE*'SV 'CB *CE' SB;
ASI a atmn(1 Q) * RD;
Nf (0 -c0) ASl +=180;
DS - asin(SD);

T += LO + 360 ' E
T -u floor(T 1360) * 360;
UmaT -ASI;
N f~tab.U> 180) U- 380 agn(U);
U /a C;
M +u T -U;
Nf (L -c 4) K++';

*wtch(K)

cue :
case 3:
cuse 5:{

case 2:{

ox~tjtow a TRUE;

M -u sgn(M);

case4:(
if (MA ý- O

edtiorw TRUE;

bra
M-usgf(m)

case 6:{
exiLrow -TRUE;
bresk;

Ifwh

Nf (exdtjiow) break,
#/Iwhhleop

H a auin(cos(F - OS)) * RD;
If (L - 4) H -, 0.95 * cos(-);
HA a H;
if (H >= (ng56))

HA - H + 1 / (tan((H + 8.59/ (H +4.42)) * DR)) 160;
S//f ((L - 1) 11 (L.. 4)
H a (A(L-11 - Sl * SO) I (CI * coo(DS));
if (fobs(> 1) H 1.5;
eole H a os(H) RD / C;
8(11- M - H;
8111 M +H;
"fog(nt I - 0; I<.1; I++){

K a2 * (I + 1) -3;
for Ont N a 1; N <=6; N++){

extLrnloop = FALSE;
B[I -n DT;

E - BB(J-LO 1360;
D•Z0+E;
If (labs(E >= 1) E -= agn(E);

TD a 280.46 + .98565 * D;
T - TD - floor(TD / 380) * 360;
if (T < 0) T += 380;
TD a 357.5 + .9856 * D;
G = (TD - flor(TD / 360) * 360) DR;
LSa (T + 1.91 * sin(G)) * DR;
ASI a atan(CE * tan(LS)) * RD;
Y a Cos(LS);
f (Y < 0) ASI +- 180;
SD = SE * sin(LS),
DS a aun(SD);
T- 180,
if (L., 4H

TO 218.32 + 13.1764 D;
V a TO - flor(TD 1360) 360;
if(V < O) V+- 360;
TO = 134.96 + 13.06499 * D;
Y a (MD - floor(D / 380) * 360) * DR;
TO 93.27 + 13.22935 * D;
0 - (TD - floor(1360) * 360) * DR;
TM 235.7 + 24.3815 * D;
W (TM - floor(TD /360) * 380) * DR;
SB a am(Y):
CB a cosY);
X = sn(O);
S - cMGO);
SO a sin(W);
CO a cos(W);
V += (6.29 - 127 CD+ .43 CB)* SB+ (.66+ 127 CB)

SD-.19 lin(G)-.23" X * S;
V*, DR;

97

Y = ((5.13-.17 *CD) "X + (.56 SB +.17 SD) *S) *DR;
SV a sin(V);
S8 a sin(Y);
CB a cos(Y);
Q CB * cos(V);
P = CE * SV *CB - SE*SB;
SD = SE SV *CB +CE * SB;
ASI "atan(P / 0) * RD;
if (0 < 0) ASI +- .180;
DS a asin(SD);

}/if (L - 4)
T += LO + 360" E;
T -- floor(T /360) * 360;
U TT-AS1;
if (fabs(U) > 180) U -, 360' sgn(U);
U/ IC;
H a (A(L-1) - Sl * SD) I (Cl * cos(DS));
if (flbs":)l- 1) H 1.5;
else H * acos(H) RD IC;
BPI += K * H - U + DT;
if (L <4) N++;
swih (N)(

cse 1:
case 3:
case 5:(

break;
)

case 2:{;
if ((a(] >, 0) && (B[p] < 1))

e*_njloop a TRUE;
}
em IrJ - sgn(Ba[D;
break;

case 4:{
if (BPI >= OX

exltnloop • TRUE;

break;}

case 6:{
exltn..oop = TRUE;
break;

}
SI/switch

if (extnjnokop) break;
HIN for loop

) 11 for loop
switch (L){

case 1:{

98

R flor100 * dn(M 24) + .5);
at R;
HA a loor(ftb(HA) + .5) * gn(HA);
sa a HA;
for (int I , 0; I1 < 1; 1++){

R - fioor(100 * drs(Brl * 24) + .5);
If ((R 1- 4800) I (R - 0)) break;
if (10(

asaR;
contine;

set R;
)
R a B11] - B[0j;
if (R < 0) R++;
R " floor(100 *dms(R 24) + .5);
dl•R;

)IA for loap
brea*
) Case I

came 2:{
for (int I a0; I <w 1; 1++){

R a floor(100 * dms(BI * 24) + .5);
If ((R :- 4800) 11 (R < 0)) breek
Nf (IQ)

Sc,, R;

elm
pca R;

)/for Wopbreek
/I cue 2

cam 3:(
for (int 1 0; I <= 1; I++){

R - floor(100 * dms(D[I] *24) + .5);
if ((R := 4800) 11 (R < 0)) break;
if (1)

an a R;
else

pn R;
}/Iforloop

break;
} ll cae 3

cue 4: {
R a Iaor(100 * &rs(M * 24) + .5);
rt R;

HA W (fsbHA) +.5) * sgn(HA);
rm - HA;
for (nt I a 0; I 4w 1; I++){

R - floor(100 * dm=(llt * 24) + .5);
If ((R = 4M00) 11 (R 0)) break;

99

If (it)
nv= R;

ale.

)/for oop
)Ucase 4

)USwitch
}1L loop

}//nain

char* fastagodttim::calendar(int bday, Int bmo, nt br,
hit eday, mt e..mo, it eyr.

float lat, float Ion, int Z,
float thresh, it delta){

Ii intdays; / of days dat is requested for
nt JB, JE; //Juln for Begin and End of requested period respectively
char "matr; H/pointer to the calendar matrix

I/ compute # of days requetd
JB a 367 * b_yr. -lor(7 * (byr + foor((bjno + 9) 112)) 14) +

floor(275 * b..mo 19) +
b.day - 730531;

JE a 367 * e.yr - floor(7 *(e_yr + floor((emo + 9) /12)) / 4) +
floor(275*eý_rno19) +

e-day - 730531;
const int days a JE - JB + 11;

II allocate space for aray and fill in header and footer
maix new ch€r1321[OM;

'i maitrx[47]O n ULGHT LEVEL PLANNING CALENDAR;
N/ for("nt count-0; count <=131; count++) matr&Xcountj4j a

rmtum(mnir);
)*1

100

LL.CPP

ft

II roulines for Nth. lInked Ngi of locatio data
ft
Sincluft wthp
Seclude -dologs~h-
Sinclude <stin.h:-

IAypes of Onle used in the Save..as dialo"
char Iypesfl a

Deb Files (-.d m -. der,
-AN Rles **u~

0,0

Inkflntlae a new nods r4f the lInked hIt of locatons
node::fmxdeo

dWata -NULL:
next a NULL;

/iMeatuctor for a node of the lInked Ist of locaton
node::-rxdeo

fiConstructo for the lInked list of locatons

d M e fie- oonite.dar;
Ulstdlty a FALSE;
head aNULL;

Nf (Nst.kty)

zMewsaa 'mag .new zMessage(app-:1rootwlndwow 'Locations have ChangedI~nSaen
Changor W A R N I N G.

MkYESNOCANCEL I MBJICONSTOP);
If (nw-msgýv~e - IDCANCEL)

return (0);

101

If (rnsg-2-value() - ID YES)

savO;

nods twMp, templ; /tamp pointers
temp a head; I/point to first node
heed a NULL; //dear head pointer
while (temp Is NULL) //step through list deleting each node

liAhe node delees the data portion
teni-ternp-mext;

delfte tamp;
temnp a temI;

Uhtdlrty a FALSE; I/set list as clean
return (1); /ketum ok.

Iocstions...ilt:open~dhalo(zVWlnow *pwln)

zFgeOpenFormn *f - new zFlleOpenFornn(app-:-rootV'Aow(J. Open File,
(char *) daetafile. types);

If (f/Ndm~te0 ieftdilgwas comleedok

dlatafile a fs-*ranaeO; H/use fth new file namne
openo; I/and open tha file.

return (1);

locatlonsjfstt:openO

clearo; I/clea the old list, to check If clean
FILE -f;
node *emp;

fp a fopen(dlatafile, "rb0); Ulopen the file
If (Ifp) return(O); /Iopen fails. report same
while(1) /Aif opened ok, continue

tempa new node;
tleap-2ocata - new locatlon..struct
result- fiad*atemp-3-clata, slzeofoocation..struct), 1, fp); //read data
If (re"ultuu) /IMdfdtaread ailed

{ /11 delete teMp node, and return
dlte tap;

Wmp-~'netwahad;
head a-tamp;
I

If (ftlos (fp) In 0) retrn (0); lIlN close fail, return faile
Hst.dlrty a FALSE; I/se list to clean

102

rstum(1):

node *eMp;
FILE *f;
fp a bpopendtaftl, 'wb');
if (IIp) return (0);.
temp u headf
while (Wmp I- NULL)

fwrte~mp'damsizeoo~ocation_*Wtuc). 1. Ip);

tiaLdit a FALSE;

kIt
a colonaksaveaskzi~ndow *pwkI)

zFlleSaveftForm *ft a new zRIeSaveAsForm(app->rootY*ldawo, "Save As'
(char 0)datale.tps)

if (fs->Coenpled)

datufie - fs-onarn.0,

return()

losforsýft:addorecoocationsbc *WMmpOcation)

node *WMpnode, taMp;
tempjiode = rew node;

I/point nodle to data struchre and link nodet int list
teMp.node-'dat. = teMpOcatio;
tempnode-->rex a head;
heWad tempjoce;
Ust.dkt = TRUE;
return (1);

Iosft:add~dialog(zVWlnow *pwin, IocadmIWoss 1)

C..dLgjcauo *dkLloc = new C...dlgocatlons(. pwin,
zResld(DIALOGJ.LOCATIONS));

//maske s oe temporary pointers

103

Wwcuionniuc 'templacmuUn
/1hnke a new node and new data structur

teMpjocation nerw kocuion.truc;
JIhnwe datb fom cuing pwoedur to data stuchur

sgcpy(WMWjcskm-Nn-~c. dLbjc*-ocaJlono);

twnpOcmdwi-:wItmn a d~joc lsbrhtmn;
tWMWoatlo-,.NS a dlgjocs.:-_j - 305;
tenipjcgtmon-W4fle a d4gjocs-:ý_ndeg;
temp .uJ. n~iormHEdu a digJocs-Jonmln;
teiiip4ocmton-*EW a dig jocs.-ýE - 309;
tefi-jocatio-,'GMT - dhlgoca-'.M;
IeMpjoct ýnDST a dlgjocs--oDST;

add-record(lewjocaiodo);
delate dgjocs;

/IN aN was suocessfid, return tue
return(TRUE);

IoctinsjWteadlt..duog(zV*idow pwn. locaionjis T1

C....dlL~o..i *dlLed* - new C...dgWOc...dl, pwin, zfeuld(EDITJ.LOCATION), head);
I.,pe som bempowy po~

node *temp a hea&;

while ((lNow In NULL) "& (temp-"dut- ýe I- djgeM~-:ýjocatwo))

tem - temp->next

If (WuMp In NULL)

strcpy(*TeP-zdt-ýdsc dhLeit--%bcmtono);
eMP4-ýWdutu-Ite d4g.edft-:ý_Wtdeg

twnp-~dutu-:,NS * le-N-50W;

Wuuup~daW4a =J dLeM~-:ý_jonde;
tomp-~dato->'EW m dlg.,edt-:...E - 509
temp->'ut-ýGM w dIadt-mWGMT;
temp-NhIta-DST a dlLedlt-'-.DST;
b~dlty z TRUE;

dele* te oed

INi aU was succeasfu, return bue
return(TRUE);

104

bGoftiOM at.deleteiaigzw*lnow Ipwin, locaowns_* TII

Cj gLiacdeI dftgdel a ew CdlgIo..del(U, pwin. zReuld(LOCATION-DELETE), head);
/Awoke samne temporary pointer

node *Mam. 'empi;

temim -temp
If V wd Ul-cmp-eted0

wIfe ((tMp I= NULL) & tm-dt-da ~d~e-jcto)

tempd -temp:4at

temp -* w temp-2next

deletem I. NULL)

noW locIf(tempt.idz~ Mehead

heed m tow; ~ nx

temp1-tnexttemp-r-nex

nde *lete % ptem;

Ust...lrty T1UE

if Nsmp~ptr) twmp_.r"a m.pjl n

ohm return (NULL);
)

106

LOCATIONs cpp

shnchade Woonglp

#nchide loeution.h"

nods :nodeO)
f

neot a NULL;

teed a NUjLL
lLnune - dt m ;

rade *hunp;
dwe *i*in = "*ftn here;
best W~t - 123.45,bi. 678.90;
%de GMT a 8.0;
hit DST w1, lodr

for (bit x - 0; x-c3; x++)

cout <4 wnentsr a number...;

temp a new node;
ob Ktmcpauidie.desc. s*fin. DESCLENGTHO;
/Ienip-odet.dssc a sirit;
tewnp-N"dd..'atd 0111 - let;
temp-.0dite.baitud -*11 bIng;
temp-,dete.GMT - GMT;
tamp-m'ete.DST -DST;
btemp-bet.lodc k lck;
temjpaou = heed;
heed = tamp;

bit

FILE -W.
node lump;

107

*fo pewnafjnl, WOW),
It (R1W mtum(O);
bKWi a hood;
whle (Iwn I- NULL)

tarIk(&tsn*-'dfta. s*zeof(Sjocaton). 1, fp);,

itftkicsoeet) In 0) retum(0);

FILE 10,
node *"mm;
h't remit
f bpe#ntjwne, OWN")

if (NOp) rokmam;
whie~l)

WepW new node;
restift - feed(&Wtmmp-,defa, slzeof(8c~on), 1, fp);

INs

It (kbe sm -0) enD)

10

MENUFRAM .CPP

8
U msnufrucpp

Msnimms:mnu~uns~~d w mtXzSW siZ.DWRD wkhýyt, MWna chu

mmsnuew ztdmnu(hK zRnsl(MENU_.M,'.'N)));
.nuw'o r..,.,, ,(CmsdrC)Simm nu~c)MvFrum.::doExitIDi.ENU FILEEXIT):
nmmsnu.3mtommndm,(ConimuidProc)MwnFrums:AddLero.Un .IDý...MEN LjOCS...ADD);

NULL;

MuwFram.::doExdtxCoemnndEvt *co)

zdisssag nmmsvcp ,.uf ý, Exi:~ t MOONLITErw.MB..OKCANCE-L);
If (mssIoww0) ap~q~O

MwiuFrinns:MdLociOn zCanmmmndEvt *ce)

MmnuFrai.::cm~nmmnd~zCoemmndEvt 'm) (

110

MOONLITE.CPP

IIMOONLITE.cpp

aiduds Notbh
indude -bmphow.h-

Uncdude Oz.hW

ftcbdsd -dloge.h-
ancidsd hroudn.e~h

Iocedoswje *1 - new loca -Nsjlt

dma MmEwnur : pukzp~

zT~xtm tp;

MenuFrune(zYMndow* peent~zSizet ulz,
DWiORD

Wkihty~conn- chat' Ut);
-MatuFimmeO;

virbid kit com.imndOzCommnimdEvta;
kit doExltAConmandEvt *);
kit AdLoculam " nvuiEvt ;
kit Ed*ouonzoinmndEvt ;
kit mlsPae zHmm Evta;
kit Fle~sopeoConimndEvta;

hit FN@SOvsn4CoenvundEwta;
kit Spavg(zCammmndEvt a);

hirt EvantrComnwimdEvt *);
kit PodftonzConimnedEvt a);
kit kWA-zvsnta;
do~k&;

Mei~nuwr: Meu -lmsAVAld powendzlt siz,DWORD wkiftyle c"ne chat
~)iA~apF ~ *we Wknmtybe)
bni ~no nw (oftw~w~~, new z~isbmmeamnt;

*p fopenmoanl.bWl.r"; //open the Ust
If (1p)

tbnpPene*,displyrmwmoonte-bnm); Ilopeai ok. displa bmp

uetlon(now zi=XnzRe*WdICQNJD);
menu(naw zManu(this, zRe.Id(PENULMAIN)));
mmnuetommand.(commandfo=)&mUFrmflW :doEIaD..MENU..FILEEXIT);
* 1wwaIJ eCommwuU.(CommndwPo)&MumFrwfi:AddLocatlofl,ID-ENU.LOCS..ADD);

mwto..,.1omwx~th,(Commndxuroc)&MunuFrame::EdlLUofi,lDYMENt...LOCS...EDrl);

>se(conwwxdfNs,(ConwnundProc)&MwvuFfamS::DetSoWUA~fl.IOY-ENULOCS,..DELETE).
nmuuo -n IConvr,.,mdUs,(Convnwndproc)&MenuFrwme::FNeSavO.lD..MENU..FILESAVE);

-xvtq m1 .,.(CamndP&Menu&Mwu:FrnS e:File.IDY _ENUFILEOPEN),
enu et.>$Canmand~hls.(CommnunPrac)&MwnuFrame::FSNew.ID...MENUJFILENEW).

iii*.. v..ýIsCommnwdProc)&MenuFrame::FileS5nf.10DENjLLLESAVEAS);
num--setCommand~Vfe(Commndpfo)&MenuFf::SpotDtaIOJAMENU..SPOTDATA);

mww~ntCMMK~t1 Comm nd wxoc)M enuFrame::EventIDJJMENU..D LYEVENTS);
mwAnuO.-isetConwmmmn(I,(ConminwdPrO)&MefluFrame::Po5Ioflo,IDj.4ENLLOSITlON);

NULL;~

mnt
MenuFame: :doExlt(zCoinmnidEvt *ce)

if U-'-peekjLdktYO)

z~qeauag 'mug -new zMessoge"ti, Location hav ChangedM~Save Changes?",
VV AR N ING",

MB..YESNO I MBJCONSTOP);
Nf (msg-nvakuO - lOVES)

msnuFrame:AddLacaU~n(CovnwflflEvt 'ce)

MwnuFrune::Edtoalnz~l~~ 'Ce)

U-~edI~dWog(ift, U);

112

7M-. F7 7

MwkuFnmm::FleSwo~(zCoaunm dEvt *c)

MenuFruwm::F~e~aves(zCommandEvt *ye)

MmnuFfram::FS~pot~n(zCoinmandEvt *ce)

MeniFrame::EbvwvqzComnaindEvt 'ce)

rdurn~l);

MmnuFrmme::SPosD~in(zCommmnidEvt 'as)

roulnes *weng - new rouwatne(;

MenuFrumme::Eve (zýomed vt 'a.)

0-eýn (D.);
'a.1

Menu~mme:Pasllon~~ommnd~v113m

MMmnFrm=I::kUEMNt *v)

MmnuFrun *ninmkwxdnsw MnuFrame(O.new zSIw(O, 1O,825,520),zSTDFRAME,-MOQNUTE-);

If (lQ'psnO))

Aftsmpg *msg unow zM.S~g.(.P->roo4~ndowO. 'MOONLITE.dat not found.~nNo locations

OW A R N I N Go,
MB9K I MBLCONSTOP);

delete m.~nMid;

114

ROUTWIES.CPP

/I

11 rudeiamcpp'

Unclude wrouwne. h*
fnchide -diaogs.h-

routines:. .uwutns(Wcutlom-W *isu)

moudrnespdatoO

Cdl9_qpotdas% dlgupot z ewm Cd4Lspotdataml zResid(S'POT...DETAIL)D;
delfte dlg~spo

routines::evento

QIlgE vent *dlg..ent - new C__.dCg..EventOl. zResld(EVENTS));
delete digevent

routine::poe~ono

CjLpos *posget nerw Qdlg..Pos(H. zReuld(POSrnION));
dfltet pos~get

/1 POSCHATDLG *pos~chart - new POSCHARTDLG(zRe.Id(PoekLon.Chart));
Hdolete poscphad-;

115

LIST OF REFERENCES

,I] United States Marine Corps, Marine Aviation Weapons and Tactics Squadron
One, Helicopter NVG Manual, Assault Support Division, MAWTS- 1, Yuma,
Arizona 85369-6073

[2] United States Marine Corps, Marine Aviation Weapons and Tactics Squadron
One, Litelevl User's Guide, MAWTS-I, Yuma, Arizona 85369-6073

[3] Conversations between Dr. P. M. Janiczek, United States Naval Observatory,

Astronomical Applications Division and the author, 1992 - 1994

[4] Personal notes of Dr. P.M. Janiczek used for the creation of reference [2].

[5] United States Naval Observatory Circular No. 171, Computer Programs for Sun
and Moon Illuminance With Contingent Tables and Diagrams, P.M. Janiczek and
J.A. DeYoung, February 19, 1987.

[6] Borland International, Borland C++ Version 4.0 Programmers Guide, 1993

[7] Hennessy, John L, and Patterson, David A, Computer Architecture, a Quantitative
Approach, Morgan Kaufinann, 1990.

[8] Inmark Development, Zapp Programmer's Reference, 1993

[9] Handbook of Geophysics and the Space Environment. Scientific editor:
Adolph S. Jursa. AFGL, AFSYSCOM (1985). Order from NTIS, Springfield,
VA 22161, Document Accession No: ADA 167000.

[10] Stubbs, Daniel F. & Webre, Neil W., Data Structures with Abstract Data Types
andADA, PWS-Kent, 1993

116

BIBLIOGMRAHY

Berry, John Thomas, C++ Programming, Sams, 1992

McCord, James W., Borland C++ Programmer's Reference 2nd Edition, Que,
1992

Person, Ron & Rose, Karen, Using Windows 3.1, Que, 1993

Shammas, Namir Clement, Advanced C++, Sams, 1992

Stroustrup, Bjarne, The C++ Programming Language, Addison-Wesley, 1991

United States Congress, House of the, Night Vision Goggles, Hearing before the
Investigation Subcommittee on Armed Services, U.S. Government Printing Office,
Washington, D.C. 1989

Yourdon, Edward, Modern Structured Analysis, Yourdon Press, 1989

117

INIrIAL DISTRIBtUTION LIST

1, Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5 101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Douglas J. Fouts, Code EC/Fs 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Raymond F. Bernstein Jr., Code EC/Be
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Director, Training and Education
MCCDC, Code C46
1019 Eliot Rd.
Quantico, VA 22134-5027

7. Doctor Paul M. Janiczek
United States Naval Observatory
3450 Masschusets Avenue N.W.
Washington, DC 20392-5420

8. Mr. Jules Lewyckyj
Naval Air Warfare Center
Warminster, PA 18974

118

9. Captain Michael T. Lester 3
125 Leidig Circle
Monterey, CA 93940

119

